File size: 3,070 Bytes
913f3d6
 
 
 
 
 
 
 
 
145f772
 
443f593
 
 
 
 
913f3d6
 
 
 
 
443f593
 
913f3d6
0b8ca29
bcfd590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
dataset_info:
  features:
  - name: object_id
    dtype: int64
  - name: embedding
    sequence: float32
  splits:
  - name: train
    num_bytes: 818515188
    num_examples: 265407
  - name: test
    num_bytes: 204632652
    num_examples: 66353
  download_size: 1230299259
  dataset_size: 1023147840
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---
# AstroPT Euclid Embeddings

Pre-computed embeddings from the [AstroPT VIS Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_model) on Euclid dataset samples.

## Overview

This repository contains pre-computed feature embeddings generated by AstroPT models applied to the Euclid Q1 galaxy dataset. These embeddings can be used for 

- Efficient downstream task training (reduced computational cost)
- Feature analysis and visualization
- Similarity search and retrieval
- Clustering and unsupervised learning
- Fast fine-tuning on specialized tasks

Example notebooks are found in the [AstroPT scripts](https://github.com/Smith42/astroPT/tree/main/scripts/euclid)

Available embeddings:
- **VIS**: Single-band embeddings from Euclid VIS imaging; [VIS embeddings](https://huggingface.co/msiudek/astroPT_euclid_VIS_embeddings)
- **VIS+NISP**: Multi-band embeddings from VIS + 3× NIR (Y, J, H); [VIS+NISP embeddings](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_embeddings)
- **VIS+NISP+SED**: Multi-modal embeddings from imaging + 13-band photometry; [VIS+NISP+SED embeddings](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_SED_embeddings)


## Quick Start

### Load VIS Embeddings

```python
from datasets import load_dataset

# Load VIS embeddings
embeddings = load_dataset(
    "msiudek/astroPT_euclid_VIS_embeddings",
    split="train",
    streaming=True
)

# View a sample
sample = embeddings[0]
print(f"Object ID: {sample['object_id']}")
print(f"Embedding shape: {len(sample['embedding'])}")
print(f"Embedding: {sample['embedding']}")
```


## Related Resources

**Models**:
- [AstroPT VIS Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_model)
- [AstroPT VIS+NISP Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_model)
- [AstroPT VIS+NISP+SED Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_SED_model)

**Datasets**:
- [AstroPT Euclid Dataset](https://huggingface.co/datasets/msiudek/astroPT_euclid_dataset): Original imaging + photometry
- [AstroPT Euclid Metadata](https://huggingface.co/datasets/msiudek/astroPT_euclid_metadata): Galaxy properties

**Code**:
- [AstroPT GitHub](https://github.com/Smith42/astroPT): Training and inference code

## Citation

```bibtex
@article{Siudek2025,
  title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning},
  author={Siudek, M and others},
  journal={Euclid Collaboration},
  eprint={2503.15312},
  archivePrefix={arXiv},
  year={2025},
  url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract}
}
```

## License

CC-BY-4.0

---

**Last Updated**: December 2025  
**Embeddings Version**: 1.0