--- dataset_info: features: - name: object_id dtype: int64 - name: embedding sequence: float32 splits: - name: train num_bytes: 818515188 num_examples: 265407 - name: test num_bytes: 204632652 num_examples: 66353 download_size: 1230299259 dataset_size: 1023147840 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # AstroPT Euclid Embeddings Pre-computed embeddings from the [AstroPT VIS Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_model) on Euclid dataset samples. ## Overview This repository contains pre-computed feature embeddings generated by AstroPT models applied to the Euclid Q1 galaxy dataset. These embeddings can be used for - Efficient downstream task training (reduced computational cost) - Feature analysis and visualization - Similarity search and retrieval - Clustering and unsupervised learning - Fast fine-tuning on specialized tasks Example notebooks are found in the [AstroPT scripts](https://github.com/Smith42/astroPT/tree/main/scripts/euclid) Available embeddings: - **VIS**: Single-band embeddings from Euclid VIS imaging; [VIS embeddings](https://huggingface.co/msiudek/astroPT_euclid_VIS_embeddings) - **VIS+NISP**: Multi-band embeddings from VIS + 3× NIR (Y, J, H); [VIS+NISP embeddings](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_embeddings) - **VIS+NISP+SED**: Multi-modal embeddings from imaging + 13-band photometry; [VIS+NISP+SED embeddings](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_SED_embeddings) ## Quick Start ### Load VIS Embeddings ```python from datasets import load_dataset # Load VIS embeddings embeddings = load_dataset( "msiudek/astroPT_euclid_VIS_embeddings", split="train", streaming=True ) # View a sample sample = embeddings[0] print(f"Object ID: {sample['object_id']}") print(f"Embedding shape: {len(sample['embedding'])}") print(f"Embedding: {sample['embedding']}") ``` ## Related Resources **Models**: - [AstroPT VIS Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_model) - [AstroPT VIS+NISP Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_model) - [AstroPT VIS+NISP+SED Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_SED_model) **Datasets**: - [AstroPT Euclid Dataset](https://huggingface.co/datasets/msiudek/astroPT_euclid_dataset): Original imaging + photometry - [AstroPT Euclid Metadata](https://huggingface.co/datasets/msiudek/astroPT_euclid_metadata): Galaxy properties **Code**: - [AstroPT GitHub](https://github.com/Smith42/astroPT): Training and inference code ## Citation ```bibtex @article{Siudek2025, title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning}, author={Siudek, M and others}, journal={Euclid Collaboration}, eprint={2503.15312}, archivePrefix={arXiv}, year={2025}, url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract} } ``` ## License CC-BY-4.0 --- **Last Updated**: December 2025 **Embeddings Version**: 1.0