Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Korean
Size:
1K<n<10K
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Korean named entity recognition dataset""" | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @InProceedings{Kim:2016, | |
| title = "Korean Named Entity Recognition Dataset", | |
| authors = "Jae-Hoon Kim", | |
| publisher = "GitHub", | |
| year = "2016" | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Korean named entity recognition dataset | |
| """ | |
| _HOMEPAGE = "https://github.com/kmounlp/NER" | |
| _LICENSE = "NER License, MIT License for non-commercial use" | |
| _URL = "https://raw.githubusercontent.com/kmounlp/NER/master/2016klp/ner." | |
| _URLs = {key: _URL + key for key in ("train", "test", "dev")} | |
| class KorNER(datasets.GeneratorBasedBuilder): | |
| """Korean Named entity recognition dataset""" | |
| VERSION = datasets.Version("1.1.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "text": datasets.Value("string"), | |
| "annot_text": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "pos_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "SO", | |
| "SS", | |
| "VV", | |
| "XR", | |
| "VCP", | |
| "JC", | |
| "VCN", | |
| "JKB", | |
| "MM", | |
| "SP", | |
| "XSN", | |
| "SL", | |
| "NNP", | |
| "NP", | |
| "EP", | |
| "JKQ", | |
| "IC", | |
| "XSA", | |
| "EC", | |
| "EF", | |
| "SE", | |
| "XPN", | |
| "ETN", | |
| "SH", | |
| "XSV", | |
| "MAG", | |
| "SW", | |
| "ETM", | |
| "JKO", | |
| "NNB", | |
| "MAJ", | |
| "NNG", | |
| "JKV", | |
| "JKC", | |
| "VA", | |
| "NR", | |
| "JKG", | |
| "VX", | |
| "SF", | |
| "JX", | |
| "JKS", | |
| "SN", | |
| ] | |
| ) | |
| ), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel(names=["I", "O", "B_OG", "B_TI", "B_LC", "B_DT", "B_PS"]) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| downloaded_files = dl_manager.download_and_extract(_URLs) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": downloaded_files["train"], | |
| "split": "train", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": downloaded_files["test"], | |
| "split": "test", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": downloaded_files["dev"], | |
| "split": "validation", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| text = "" | |
| annot_text = "" | |
| tokens = [] | |
| pos_tags = [] | |
| ner_tags = [] | |
| for id_, row in enumerate(f): | |
| row = row.strip() | |
| if not row: | |
| yield id_, { | |
| "text": text, | |
| "annot_text": annot_text, | |
| "tokens": tokens, | |
| "pos_tags": pos_tags, | |
| "ner_tags": ner_tags, | |
| } | |
| tokens.clear() | |
| pos_tags.clear() | |
| ner_tags.clear() | |
| continue | |
| if row[0] == ";": | |
| text = row[2:] | |
| elif row[0] == "$": | |
| annot_text = row[1:] | |
| else: | |
| _, token, pos_tag, ner_tag = row.split("\t") | |
| tokens.append(token) | |
| pos_tags.append(pos_tag) | |
| ner_tags.append(ner_tag) | |