Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- data.tar.gz +3 -0
- meter2800.py +23 -70
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
data.tar.gz filter=lfs diff=lfs merge=lfs -text
|
data.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c4509dc14e7bff0cb02a9ee09676371c0cdaa4030445e358b846e38e9cee30d
|
| 3 |
+
size 9299442890
|
meter2800.py
CHANGED
|
@@ -1,18 +1,4 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""The Meter2800 dataset."""
|
| 15 |
-
|
| 16 |
from pathlib import Path
|
| 17 |
import datasets
|
| 18 |
import pandas as pd
|
|
@@ -29,59 +15,35 @@ _CITATION = """\
|
|
| 29 |
|
| 30 |
_DESCRIPTION = """\
|
| 31 |
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
|
| 32 |
-
Each audio file is annotated with a primary meter class label
|
| 33 |
-
and an alternative meter (numerical, e.g., 2, 3, 4, 6).
|
| 34 |
It is split into training, validation, and test sets, each available in two class configurations:
|
| 35 |
2-class and 4-class. All audio is 16-bit WAV format.
|
| 36 |
"""
|
| 37 |
-
|
| 38 |
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
|
| 39 |
_LICENSE = "mit"
|
| 40 |
|
| 41 |
-
# Define the labels - adjust these based on your actual data
|
| 42 |
LABELS_4 = ["three", "four", "five", "seven"]
|
| 43 |
-
LABELS_2 = ["
|
| 44 |
|
| 45 |
class Meter2800Config(datasets.BuilderConfig):
|
| 46 |
-
"""BuilderConfig for Meter2800."""
|
| 47 |
def __init__(self, name, **kwargs):
|
| 48 |
-
super(
|
| 49 |
-
name=name,
|
| 50 |
-
version=datasets.Version("1.0.0"),
|
| 51 |
-
**kwargs
|
| 52 |
-
)
|
| 53 |
|
| 54 |
class Meter2800(datasets.GeneratorBasedBuilder):
|
| 55 |
-
"""Meter2800 dataset."""
|
| 56 |
-
|
| 57 |
BUILDER_CONFIGS = [
|
| 58 |
-
Meter2800Config(
|
| 59 |
-
|
| 60 |
-
description="4-class meter classification"
|
| 61 |
-
),
|
| 62 |
-
Meter2800Config(
|
| 63 |
-
name="2_classes",
|
| 64 |
-
description="2-class meter classification"
|
| 65 |
-
),
|
| 66 |
]
|
| 67 |
-
|
| 68 |
DEFAULT_CONFIG_NAME = "4_classes"
|
| 69 |
|
| 70 |
def _info(self):
|
| 71 |
-
if self.config.name == "4_classes"
|
| 72 |
-
label_names = LABELS_4
|
| 73 |
-
elif self.config.name == "2_classes":
|
| 74 |
-
label_names = LABELS_2
|
| 75 |
-
else:
|
| 76 |
-
# Fallback - shouldn't happen with proper configs
|
| 77 |
-
label_names = LABELS_4
|
| 78 |
-
|
| 79 |
return datasets.DatasetInfo(
|
| 80 |
description=_DESCRIPTION,
|
| 81 |
features=datasets.Features({
|
| 82 |
"filename": datasets.Value("string"),
|
| 83 |
-
"audio": datasets.Audio(sampling_rate=
|
| 84 |
-
"label": datasets.ClassLabel(names=
|
| 85 |
"meter": datasets.Value("string"),
|
| 86 |
"alt_meter": datasets.Value("string"),
|
| 87 |
}),
|
|
@@ -92,44 +54,35 @@ class Meter2800(datasets.GeneratorBasedBuilder):
|
|
| 92 |
)
|
| 93 |
|
| 94 |
def _split_generators(self, dl_manager):
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
return [
|
| 99 |
datasets.SplitGenerator(
|
| 100 |
name=datasets.Split.TRAIN,
|
| 101 |
-
gen_kwargs={
|
| 102 |
-
"csv_file": f"{data_dir}/data_train_{self.config.name}.csv",
|
| 103 |
-
"data_dir": data_dir
|
| 104 |
-
},
|
| 105 |
),
|
| 106 |
datasets.SplitGenerator(
|
| 107 |
name=datasets.Split.VALIDATION,
|
| 108 |
-
gen_kwargs={
|
| 109 |
-
"csv_file": f"{data_dir}/data_val_{self.config.name}.csv",
|
| 110 |
-
"data_dir": data_dir
|
| 111 |
-
},
|
| 112 |
),
|
| 113 |
datasets.SplitGenerator(
|
| 114 |
name=datasets.Split.TEST,
|
| 115 |
-
gen_kwargs={
|
| 116 |
-
"csv_file": f"{data_dir}/data_test_{self.config.name}.csv",
|
| 117 |
-
"data_dir": data_dir
|
| 118 |
-
},
|
| 119 |
),
|
| 120 |
]
|
| 121 |
|
| 122 |
-
def _generate_examples(self,
|
| 123 |
-
df = pd.read_csv(
|
| 124 |
-
df = df.dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)
|
| 125 |
-
|
| 126 |
for idx, row in df.iterrows():
|
| 127 |
-
|
| 128 |
-
audio_path = f"{data_dir}/{row['filename']}"
|
| 129 |
-
|
| 130 |
yield idx, {
|
| 131 |
"filename": row["filename"],
|
| 132 |
-
"audio":
|
| 133 |
"label": row["label"],
|
| 134 |
"meter": str(row["meter"]),
|
| 135 |
"alt_meter": str(row.get("alt_meter", row["meter"])),
|
|
|
|
| 1 |
+
# meter2800.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
import datasets
|
| 4 |
import pandas as pd
|
|
|
|
| 15 |
|
| 16 |
_DESCRIPTION = """\
|
| 17 |
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
|
| 18 |
+
Each audio file is annotated with a primary meter class label and an alternative meter.
|
|
|
|
| 19 |
It is split into training, validation, and test sets, each available in two class configurations:
|
| 20 |
2-class and 4-class. All audio is 16-bit WAV format.
|
| 21 |
"""
|
|
|
|
| 22 |
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
|
| 23 |
_LICENSE = "mit"
|
| 24 |
|
|
|
|
| 25 |
LABELS_4 = ["three", "four", "five", "seven"]
|
| 26 |
+
LABELS_2 = ["three", "four"]
|
| 27 |
|
| 28 |
class Meter2800Config(datasets.BuilderConfig):
|
|
|
|
| 29 |
def __init__(self, name, **kwargs):
|
| 30 |
+
super().__init__(name=name, version=datasets.Version("1.0.0"), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
class Meter2800(datasets.GeneratorBasedBuilder):
|
|
|
|
|
|
|
| 33 |
BUILDER_CONFIGS = [
|
| 34 |
+
Meter2800Config(name="4_classes", description="4‑class meter classification"),
|
| 35 |
+
Meter2800Config(name="2_classes", description="2‑class meter classification"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
]
|
|
|
|
| 37 |
DEFAULT_CONFIG_NAME = "4_classes"
|
| 38 |
|
| 39 |
def _info(self):
|
| 40 |
+
labels = LABELS_4 if self.config.name == "4_classes" else LABELS_2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
return datasets.DatasetInfo(
|
| 42 |
description=_DESCRIPTION,
|
| 43 |
features=datasets.Features({
|
| 44 |
"filename": datasets.Value("string"),
|
| 45 |
+
"audio": datasets.Audio(sampling_rate=22050),
|
| 46 |
+
"label": datasets.ClassLabel(names=labels),
|
| 47 |
"meter": datasets.Value("string"),
|
| 48 |
"alt_meter": datasets.Value("string"),
|
| 49 |
}),
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
def _split_generators(self, dl_manager):
|
| 57 |
+
# download CSVs and tarball
|
| 58 |
+
csv_files = dl_manager.download({
|
| 59 |
+
split: f"https://huggingface.co/datasets/pianistprogrammer/Meter2800/resolve/main/data_{split}_{self.config.name}.csv"
|
| 60 |
+
for split in ["train", "val", "test"]
|
| 61 |
+
})
|
| 62 |
+
archive = dl_manager.download_and_extract("https://huggingface.co/datasets/pianistprogrammer/Meter2800/resolve/main/data.tar.gz")
|
| 63 |
+
|
| 64 |
return [
|
| 65 |
datasets.SplitGenerator(
|
| 66 |
name=datasets.Split.TRAIN,
|
| 67 |
+
gen_kwargs={"csv_path": csv_files["train"], "root": archive}
|
|
|
|
|
|
|
|
|
|
| 68 |
),
|
| 69 |
datasets.SplitGenerator(
|
| 70 |
name=datasets.Split.VALIDATION,
|
| 71 |
+
gen_kwargs={"csv_path": csv_files["val"], "root": archive}
|
|
|
|
|
|
|
|
|
|
| 72 |
),
|
| 73 |
datasets.SplitGenerator(
|
| 74 |
name=datasets.Split.TEST,
|
| 75 |
+
gen_kwargs={"csv_path": csv_files["test"], "root": archive}
|
|
|
|
|
|
|
|
|
|
| 76 |
),
|
| 77 |
]
|
| 78 |
|
| 79 |
+
def _generate_examples(self, csv_path, root):
|
| 80 |
+
df = pd.read_csv(csv_path).dropna(subset=["filename", "label", "meter"]).reset_index(drop=True)
|
|
|
|
|
|
|
| 81 |
for idx, row in df.iterrows():
|
| 82 |
+
path = Path(root) / row["filename"]
|
|
|
|
|
|
|
| 83 |
yield idx, {
|
| 84 |
"filename": row["filename"],
|
| 85 |
+
"audio": str(path),
|
| 86 |
"label": row["label"],
|
| 87 |
"meter": str(row["meter"]),
|
| 88 |
"alt_meter": str(row.get("alt_meter", row["meter"])),
|