sys0409 commited on
Commit
aa8d5d4
·
verified ·
1 Parent(s): f1379d9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +48 -27
README.md CHANGED
@@ -1,29 +1,50 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: src
5
- dtype: string
6
- - name: tgt
7
- dtype: string
8
- splits:
9
- - name: train
10
- num_bytes: 12641
11
- num_examples: 272
12
- - name: validation
13
- num_bytes: 1562
14
- num_examples: 34
15
- - name: test
16
- num_bytes: 1579
17
- num_examples: 34
18
- download_size: 14218
19
- dataset_size: 15782
20
- configs:
21
- - config_name: default
22
- data_files:
23
- - split: train
24
- path: data/train-*
25
- - split: validation
26
- path: data/validation-*
27
- - split: test
28
- path: data/test-*
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language: [en]
4
+ tags:
5
+ - seq2seq
6
+ - dna
7
+ - protein
8
+ - eb502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
+
11
+ # DNA → Amino Acid Translation Dataset (EB502 HW1)
12
+
13
+ ## Description
14
+
15
+ This dataset contains randomly generated DNA sequences (A, C, G, T)
16
+ of fixed length (e.g., 30 nucleotides), and their corresponding
17
+ amino acid sequences translated using the standard genetic code.
18
+
19
+ Each example is a simple **sequence-to-sequence** pair:
20
+
21
+ - `src`: input DNA sequence (string)
22
+ - `tgt`: output amino acid sequence (string)
23
+
24
+ Stop codons (*TAA, TAG, TGA*) terminate translation,
25
+ and empty translations are filtered out.
26
+
27
+ This dataset is created as part of **KAIST EB502 (Seq2Seq Data HW1)**.
28
+
29
+ ## Dataset Structure
30
+
31
+ - **Fields**
32
+ - `src`: DNA sequence, composed of 'A', 'C', 'G', 'T'
33
+ - `tgt`: translated amino acid sequence, using standard codon table
34
+
35
+ - **Splits**
36
+ - `train` (~80% of samples)
37
+ - `validation` (~10% of samples)
38
+ - `test` (~10% of samples)
39
+
40
+ ## Intended Use
41
+
42
+ This dataset is intended for educational purposes, to practice:
43
+
44
+ - Sequence-to-sequence data preparation
45
+ - Training simple translation models
46
+ - Using Hugging Face Datasets and Hub
47
+
48
+ ## License
49
+
50
+ MIT License.