File size: 16,089 Bytes
c0e11ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
---
license:
  - cc-by-4.0
  - cc-by-nc-4.0
  - etalab-2.0
language:
- en
tags:
  - sen2venus
  - sentinel-2
  - VENµS
  - venus
  - super-resolution
  - harmonization
  - synthetic
  - cross-sensor
  - temporal
pretty_name: sen2venus
viewer: false
---

<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">

![Dataset Image](assets/taco.png)
  
<b><p>This dataset follows the TACO specification.</p></b>
</div>

<br>

# SEN2VENµS: A Dataset for the Training of Sentinel-2 Super-Resolution Algorithms


## Description

**SEN2VENµS** is an open dataset used for super-resolution of Sentinel-2 images by leveraging simultaneous acquisitions with the VENµS satellite. The original dataset includes 10m and 20m cloud-free surface reflectance patches from Sentinel-2, with reference spatially-registered surface reflectance patches at 5m resolution from the VENµS satellite, acquired on the same day. This dataset spans 29 locations, totaling 132,955 patches of 256x256 pixels at 5m resolution.

However, a modified version of the original SEN2VENµS dataset has been created. Several changes have been made to adapt the dataset for use within the TACO framework.

## Creators
- Julien Michel
- Juan Vinasco-Salinas
- Jordi Inglada
- Olivier Hagolle

## Original dataset
- **Version 1.0.0**: [Changelog Link](https://zenodo.org/records/6514159)
- **Version 2.0.0**: [Changelog Link](https://zenodo.org/records/14603764)

### Modifications in Version 2.0.0:
- All patches are stored in individual geoTIFF files with proper georeferencing and grouped in zip files per site and per category.
- The dataset now includes 20-meter resolution SWIR bands B11 and B12 from Sentinel-2. Note: There is no high-resolution reference for these bands since the VENµS sensor does not include SWIR bands.

### Files Organization

The dataset is divided into separate sub-datasets in individual zip files for each site. Note that the number of patches and pairs may slightly vary compared to version 1.0.0 due to the previous incorrect count.

<div style="text-align: center; display:flex; align-items: center;justify-content: center;">
  <table>
    <caption><em>Number of Patches and Pairs per Site, with VENµS Viewing Zenith Angle</em></caption>
    <tr>
      <th>Site</th>
      <th>Number of Patches</th>
      <th>Number of Pairs</th>
      <th>VENµS Zenith Angle</th>
    </tr>
    <tr>
      <td>FR-LQ1</td>
      <td>4888</td>
      <td>18</td>
      <td>1.795402</td>
    </tr>
    <tr>
      <td>NARYN</td>
      <td>3813</td>
      <td>24</td>
      <td>5.010906</td>
    </tr>
    <tr>
      <td>FGMANAUS</td>
      <td>129</td>
      <td>4</td>
      <td>7.232127</td>
    </tr>
    <tr>
      <td>MAD-AMBO</td>
      <td>1442</td>
      <td>18</td>
      <td>14.788115</td>
    </tr>
    <tr>
      <td>ARM</td>
      <td>15859</td>
      <td>39</td>
      <td>15.160683</td>
    </tr>
    <tr>
      <td>BAMBENW2</td>
      <td>9018</td>
      <td>34</td>
      <td>17.766533</td>
    </tr>
    <tr>
      <td>ES-IC3XG</td>
      <td>8822</td>
      <td>34</td>
      <td>18.807686</td>
    </tr>
    <tr>
      <td>ANJI</td>
      <td>2312</td>
      <td>14</td>
      <td>19.310494</td>
    </tr>
    <tr>
      <td>ATTO</td>
      <td>2258</td>
      <td>9</td>
      <td>22.048651</td>
    </tr>
    <tr>
      <td>ESGISB-3</td>
      <td>6057</td>
      <td>19</td>
      <td>23.683871</td>
    </tr>
    <tr>
      <td>ESGISB-1</td>
      <td>2891</td>
      <td>12</td>
      <td>24.561609</td>
    </tr>
    <tr>
      <td>FR-BIL</td>
      <td>7105</td>
      <td>30</td>
      <td>24.802892</td>
    </tr>
    <tr>
      <td>K34-AMAZ</td>
      <td>1384</td>
      <td>20</td>
      <td>24.982675</td>
    </tr>
    <tr>
      <td>ESGISB-2</td>
      <td>3067</td>
      <td>13</td>
      <td>26.209776</td>
    </tr>
    <tr>
      <td>ALSACE</td>
      <td>2653</td>
      <td>16</td>
      <td>26.877071</td>
    </tr>
    <tr>
      <td>LERIDA-1</td>
      <td>2281</td>
      <td>5</td>
      <td>28.524780</td>
    </tr>
    <tr>
      <td>ESTUAMAR</td>
      <td>911</td>
      <td>12</td>
      <td>28.871947</td>
    </tr>
    <tr>
      <td>SUDOUE-5</td>
      <td>2176</td>
      <td>20</td>
      <td>29.170244</td>
    </tr>
    <tr>
      <td>KUDALIAR</td>
      <td>7269</td>
      <td>20</td>
      <td>29.180855</td>
    </tr>
    <tr>
      <td>SUDOUE-6</td>
      <td>2435</td>
      <td>14</td>
      <td>29.192055</td>
    </tr>
    <tr>
      <td>SUDOUE-4</td>
      <td>935</td>
      <td>7</td>
      <td>29.516127</td>
    </tr>
    <tr>
      <td>SUDOUE-3</td>
      <td>5363</td>
      <td>14</td>
      <td>29.998115</td>
    </tr>
    <tr>
      <td>SO1</td>
      <td>12018</td>
      <td>36</td>
      <td>30.255978</td>
    </tr>
    <tr>
      <td>SUDOUE-2</td>
      <td>9700</td>
      <td>27</td>
      <td>31.295256</td>
    </tr>
    <tr>
      <td>ES-LTERA</td>
      <td>1701</td>
      <td>19</td>
      <td>31.971764</td>
    </tr>
    <tr>
      <td>FR-LAM</td>
      <td>7299</td>
      <td>22</td>
      <td>32.054056</td>
    </tr>
    <tr>
      <td>SO2</td>
      <td>738</td>
      <td>22</td>
      <td>32.218481</td>
    </tr>
    <tr>
      <td>BENGA</td>
      <td>5857</td>
      <td>28</td>
      <td>32.587334</td>
    </tr>
    <tr>
      <td>JAM2018</td>
      <td>2564</td>
      <td>18</td>
      <td>33.718953</td>
    </tr>
  </table>

</div>

<div style="text-align: center;">
    <img src="assets/map_venus.png" alt="Spectral sensitivity response" width="100%">
    <caption><em>Map of Sentinel-2 coverage on Theia (orange), available VENµS sites (green) and 29 selected sites (red) for the dataset. Source: Michel et al. (2022) </em></caption>
</div>

## Taco dataset

The Taco dataset has been modified for use within the TACO framework. Each path and timestamp now contain two images:

- **High-Resolution (HR) images**: 8 bands (VENµS does not include SWIR bands).
- **Low-Resolution (LR) images**: 10 bands (Sentinel-2 includes SWIR bands B11 and B12).

Several preprocessing steps have been applied to the dataset:
- **Handling of negative pixel values:** Some Sentinel-2 images contained negative pixel values, which have been masked to **0**.
- **No-data values:** All no-data values are now set to **65525** for consistency.
- **Data type conversion:** The original dataset was stored in **int16**, and it has been converted to **uint16** for storage and processing.
- **Compression for GeoTIFF files:** The dataset uses compression settings to reduce storage size while maintaining data quality:
  - **Compression algorithm:** `zstd`
  - **Compression level:** `13`
  - **Predictor:** `2`
  - **Interleave mode:** `band`



Each sample consists of two corresponding samples: one from Sentinel-2 and the other from VENµS. You can check the details of each band for these samples as shown in the table below:

| **idx** | **Band** | **Sentinel-2** | **VENµS** |
| :--- | :--- | :--- | :--- |
| 0 | **B2** | Band 2 - Blue - 10m | Band 2 - Blue - 10m |
| 1 | **B3** | Band 3 - Green - 10m | Band 3 - Green - 10m |
| 2 | **B4** | Band 4 - Red - 10m | Band 4 - Red - 10m |
| 3 | **B5** | Band 5 - Red Edge 1 - 20m | Band 5 - Red Edge 1 - 10m |
| 4 | **B6** | Band 6 - Red Edge 2 - 20m | Band 6 - Red Edge 2 - 10m |
| 5 | **B7** | Band 7 - Red Edge 3 - 20m | Band 7 - Red Edge 3 - 10m |
| 6 | **B8** | Band 8 - Near Infrared - 10m | Band 8 - Near Infrared - 10m |
| 7 | **B8A** | Band 8A - Red Edge 4 - 20m | Band 8A - Red Edge 4 - 10m |
| 8 | **B11** | Band 11 - SWIR 1 - 20m | - |
| 9 | **B12** | Band 12 - SWIR 2 - 20m | - |



## 🔄 Reproducible Example

<a target="_blank" href="https://colab.research.google.com/drive/1gQh4_bqfdhYi7pNfNd2oD6Ck_Yhoyw3k?usp=sharing">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>


Load this dataset using the `tacoreader` library.

```python
import tacoreader
import rasterio as rio
import matplotlib.pyplot as plt

dataset = tacoreader.load("tacofoundation:sen2venus")

# Read a sample row
row = dataset.read(1000)
row_id = dataset.iloc[1000]["tortilla:id"]
row_lr = row.iloc[0]
row_hr = row.iloc[1]

# Retrieve the data
lr, hr = row.read(0), row.read(1)
with rio.open(lr) as src_lr, rio.open(hr) as src_hr:
    lr_data = src_lr.read([1, 2, 3]) # Blue, Green, Red of Sentinel-2
    hr_data = src_hr.read([1, 2, 3]) # Blue, Green, Red of Neon

# Display
fig, ax = plt.subplots(1, 2, figsize=(10, 5.5))
ax[0].imshow(lr_data.transpose(1, 2, 0) / 1000)
ax[0].set_title(f'LR_{row_id}')
ax[0].axis('off')
ax[1].imshow(hr_data.transpose(1, 2, 0) / 1000) 
ax[1].set_title(f'HR_{row_id}')
ax[1].axis('off')
plt.tight_layout()
plt.show()
```

<center>
    <img src='assets/sen2venus_example.png' alt='drawing' width='100%'/>
</center>



## 🛰️ Sensor Information
The sensor related to the dataset: **sentinel2msi** and **venus**

## 🎯 Task
The task associated with this dataset: **super-resolution**

## 📂 Original Data Repository
Source location of the raw data:**[https://zenodo.org/records/14603764](https://zenodo.org/records/14603764)**
## 💬 Discussion


Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/sen2venus/discussions](https://huggingface.co/datasets/tacofoundation/sen2venus/discussions)**

## 🔀 Split Strategy

All train.

## 📚 Scientific Publications

Publications that reference or describe the dataset.

### Publication 01
- **DOI**: [10.3390/data7070096](https://doi.org/10.3390/data7070096)
- **Summary**: Boosted by the progress in deep learning, Single Image Super-Resolution (SISR) has gained a lot of interest in the remote sensing community, who sees it as an opportunity to compensate for satellites’ ever-limited spatial resolution with respect to end users’ needs. This is especially true for Sentinel-2 because of its unique combination of resolution, revisit time, global coverage and free and open data policy. While there has been a great amount of work on network architectures in recent years, deep-learning-based SISR in remote sensing is still limited by the availability of the large training sets it requires. The lack of publicly available large datasets with the required variability in terms of landscapes and seasons pushes researchers to simulate their own datasets by means of downsampling. This may impair the applicability of the trained model on real-world data at the target input resolution. This paper presents SEN2VENµS, an open-data licensed dataset composed of 10 m and 20 m cloud-free surface reflectance patches from Sentinel-2, with their reference spatially registered surface reflectance patches at 5 m resolution acquired on the same day by the VENµS satellite. This dataset covers 29 locations on earth with a total of 132,955 patches of 256 × 256 pixels at 5 m resolution and can be used for the training and comparison of super-resolution algorithms to bring the spatial resolution of 8 of the Sentinel-2 bands up to 5 m.
- **BibTeX Citation**:
```bibtex
@article{michel2022sen2venmus,
	title        = {Sen2ven$\mu$s, a dataset for the training of sentinel-2 super-resolution algorithms},
	author       = {Michel, Julien and Vinasco-Salinas, Juan and Inglada, Jordi and Hagolle, Olivier},
	year         = 2022,
	journal      = {Data},
	publisher    = {MDPI},
	volume       = 7,
	number       = 7,
	pages        = 96
}
```

### Publication 02
- **Summary**: In remote sensing, Single Image Super-Resolution can be learned from large cross-sensor datasets with matched High Resolution and Low Resolution satellite images, thus avoiding the domain gap issue that occurs when generating the Low Resolution image by degrading the High Resolution one. Yet cross-sensor datasets come with their own challenges, caused by the radiometric and geometric discrepancies that arise from using different sensors and viewing conditions. While those discrepancies can be prominent, their impact has been vastly overlooked in the literature, which often focuses on pursuing more complex models without questioning how they can be trained and fairly evaluated in a cross-sensor setting. This paper intends to fill this gap and provide insight on how to train and evaluate cross-sensor Single-Image Super-Resolution Deep Learning models. First, it investigates standard Image Quality metrics robustness to discrepancies and highlights which ones can actually be trusted in this context. Second, it proposes a complementary set of Frequency Domain Analysis based metrics that are tailored to measure spatial frequency restoration performances. Metrics tailored for measuring radiometric and geometric distortion are also proposed. Third, a robust training and evaluation strategy is proposed, with respect to discrepancies. The effectiveness of the proposed strategy is demonstrated by experiments using two widely used cross-sensor datasets: Sen2Venµs and Worldstrat. Those experiments also showcase how the proposed set of metrics can be used to achieve a fair comparison of different models in a cross-sensor setting.

- **BibTeX Citation**:
```bibtex
@unpublished{michel:hal-04723225,
	title        = {{Revisiting remote sensing cross-sensor Single Image Super-Resolution: the overlooked impact of geometric and radiometric distortion}},
	author       = {Michel, Julien and Kalinicheva, Ekaterina and Inglada, Jordi},
	year         = 2025,
	month        = {Jan},
	url          = {https://hal.science/hal-04723225},
	note         = {Submitted to IEEE Transactions on Geoscience and Remote Sensing.This work was partly performed using HPC resources from GENCI-IDRIS (Grant 2023-AD010114835)This work was partly performed using HPC resources from CNES Computing Center.},
	pdf          = {https://hal.science/hal-04723225v2/file/tgrs_michel_double_v2.pdf},
	hal_id       = {hal-04723225},
	hal_version  = {v2}
}
```
### Publication 03
- **DOI**: [10.5281/zenodo.14603764](https://doi.org/10.5281/zenodo.14603764)
- **Summary**: SEN2VENµS is an open dataset for the super-resolution of Sentinel-2 images by leveraging simultaneous acquisitions with the VENµS satellite. The dataset is composed of 10m and 20m cloud-free surface reflectance patches from Sentinel-2, with their reference spatially-registered surface reflectance patches at 5 meters resolution acquired on the same day by the VENµS satellite. This dataset covers 29 locations with a total of 132 955 patches of 256x256 pixels at 5 meters resolution, and can be used for the training of super-resolution algorithms to bring spatial resolution of 8 of the Sentinel-2 bands down to 5 meters.

- **BibTeX Citation**:
```bibtex
@dataset{julien_michel_2025_14603764,
	title        = {SEN2VENµS, a dataset for the training of Sentinel-2 super-resolution algorithms},
	author       = {Julien Michel and Juan Vinasco-Salinas and Jordi Inglada and Olivier Hagolle},
	year         = 2025,
	month        = {jan},
	publisher    = {Zenodo},
	doi          = {10.5281/zenodo.14603764},
	url          = {https://doi.org/10.5281/zenodo.14603764},
	version      = {2.0.0}
}
```

## 🤝 Data Providers

Organizations or individuals responsible for the dataset.
|**Name**|**Role**|**URL**|
| :--- | :--- | :--- |
|CNES / Theia data centre|producer|[https://theia.cnes.fr/](https://theia.cnes.fr/)|
|Zenodo|host|[https://zenodo.org/record/14603764/](https://zenodo.org/record/14603764/)|

## 🧑‍🔬 Curators

Responsible for structuring the dataset in the TACO format.
|**Name**|**Organization**|**URL**|
| :--- | :--- | :--- |
|Julio Contreras|Image & Signal Processing|[https://juliocontrerash.github.io/](https://juliocontrerash.github.io/)|

## 🌈 Optical Bands


<div style="text-align: center;">
    <img src="assets/sr_images.png" alt="Spectral sensitivity response" width="100%">
    <p><em>Spectral sensitivity response of corresponding spectral bands between Sentinel-2 (top) and VENµS (bottom). Source: Michel et al. (2022) </em></p>
</div>