Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| """TODO(drop): Add a description here.""" | |
| from __future__ import absolute_import, division, print_function | |
| import json | |
| import os | |
| import datasets | |
| # TODO(drop): BibTeX citation | |
| _CITATION = """\ | |
| @inproceedings{Dua2019DROP, | |
| author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner}, | |
| title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, | |
| booktitle={Proc. of NAACL}, | |
| year={2019} | |
| } | |
| """ | |
| # TODO(drop): | |
| _DESCRIPTION = """\ | |
| DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. | |
| . DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a | |
| question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or | |
| sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was | |
| necessary for prior datasets. | |
| """ | |
| _URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip" | |
| class Drop(datasets.GeneratorBasedBuilder): | |
| """TODO(drop): Short description of my dataset.""" | |
| # TODO(drop): Set up version. | |
| VERSION = datasets.Version("0.1.0") | |
| def _info(self): | |
| # TODO(drop): Specifies the datasets.DatasetInfo object | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # datasets.features.FeatureConnectors | |
| features=datasets.Features( | |
| { | |
| "passage": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "answers_spans": datasets.features.Sequence({"spans": datasets.Value("string")}) | |
| # These are the features of your dataset like images, labels ... | |
| } | |
| ), | |
| # If there's a common (input, target) tuple from the features, | |
| # specify them here. They'll be used if as_supervised=True in | |
| # builder.as_dataset. | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage="https://allennlp.org/drop", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| # TODO(drop): Downloads the data and defines the splits | |
| # dl_manager is a datasets.download.DownloadManager that can be used to | |
| # download and extract URLs | |
| dl_dir = dl_manager.download_and_extract(_URl) | |
| data_dir = os.path.join(dl_dir, "drop_dataset") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json")}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| # TODO(drop): Yields (key, example) tuples from the dataset | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for i, key in enumerate(data): | |
| example = data[key] | |
| qa_pairs = example["qa_pairs"] | |
| for j, qa in enumerate(qa_pairs): | |
| question = qa["question"] | |
| answers = qa["answer"]["spans"] | |
| yield str(i) + "_" + str(j), { | |
| "passage": example["passage"], | |
| "question": question, | |
| "answers_spans": {"spans": answers}, | |
| } | |