Datasets:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
task_categories:
|
| 3 |
+
- text-classification
|
| 4 |
+
language:
|
| 5 |
+
- vi
|
| 6 |
+
---
|
| 7 |
+
## Dataset Card for ViSFD
|
| 8 |
+
|
| 9 |
+
### 1. Dataset Summary
|
| 10 |
+
|
| 11 |
+
**UIT‑ViSFD** is a Vietnamese smartphone‐feedback corpus for **aspect‐based sentiment analysis**. It contains **11,122** human‐annotated comments collected from a major e‑commerce platform, with **10 aspect** categories and **3 sentiment polarities** per comment (positive/neutral/negative). In this unified version, train/dev/test splits have been merged into one CSV with a `type` column indicating the split.
|
| 12 |
+
|
| 13 |
+
### 2. Supported Tasks and Metrics
|
| 14 |
+
|
| 15 |
+
* **Primary Task**: Multi‐aspect sentiment classification
|
| 16 |
+
* **Metrics**:
|
| 17 |
+
|
| 18 |
+
* **Accuracy** (per‐aspect and overall)
|
| 19 |
+
* **Macro‑averaged F1** (per‐aspect and overall)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
### 3. Languages
|
| 23 |
+
|
| 24 |
+
* Vietnamese
|
| 25 |
+
|
| 26 |
+
### 4. Dataset Structure
|
| 27 |
+
|
| 28 |
+
| Column | Type | Description |
|
| 29 |
+
| ----------- | ------ | ----------------------------------------------------------------------------------------------- |
|
| 30 |
+
| `comment` | string | The raw user feedback text (Vietnamese). |
|
| 31 |
+
| `n_star` | int | Number of stars given by the user (1–5). |
|
| 32 |
+
| `data_time` | string | Timestamp when the comment was posted. |
|
| 33 |
+
| `label` | string | JSON‐encoded mapping from each of the **10 aspects** to one of `{negative, neutral, positive}`. |
|
| 34 |
+
| `type` | string | Split: `train` / `validation` / `test`. |
|
| 35 |
+
| `dataset` | string | Always `ViSFD` (for provenance). |
|
| 36 |
+
|
| 37 |
+
### 5. Data Fields
|
| 38 |
+
|
| 39 |
+
* **comment** (`str`): The raw consumer feedback.
|
| 40 |
+
* **n\_star** (`int`): User rating (1–5).
|
| 41 |
+
* **data\_time** (`str`): Posting date/time of the comment.
|
| 42 |
+
* **label** (`str`): A JSON object mapping each aspect to its polarity label.
|
| 43 |
+
* **type** (`str`): Which split the sample belongs to.
|
| 44 |
+
* **dataset** (`str`): Always `ViSFD`.
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
### 6. Usage
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from datasets import load_dataset
|
| 51 |
+
import json
|
| 52 |
+
|
| 53 |
+
ds = load_dataset("visolex/visfd")
|
| 54 |
+
|
| 55 |
+
# Separate splits
|
| 56 |
+
train = ds.filter(lambda ex: ex["type"] == "train")
|
| 57 |
+
val = ds.filter(lambda ex: ex["type"] == "dev")
|
| 58 |
+
test = ds.filter(lambda ex: ex["type"] == "test")
|
| 59 |
+
|
| 60 |
+
# Inspect one example
|
| 61 |
+
example = train[0]
|
| 62 |
+
labels = json.loads(example["label"])
|
| 63 |
+
print("Comment:", example["comment"])
|
| 64 |
+
print("Aspects ▶️", labels)
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
### 7. Source & Links
|
| 69 |
+
|
| 70 |
+
* **Original GitHub (data & code)**
|
| 71 |
+
[https://github.com/LuongPhan/UIT-ViSFD](https://github.com/LuongPhan/UIT-ViSFD)
|
| 72 |
+
* **Conference Paper**
|
| 73 |
+
Phan et al. (2021), “SA2SL: From Aspect‑Based Sentiment Analysis to Social Listening System for Business Intelligence”
|
| 74 |
+
|
| 75 |
+
---
|
| 76 |
+
|
| 77 |
+
### 8. Contact Information
|
| 78 |
+
|
| 79 |
+
* **Author**: Luong Luc Phan et al.
|
| 80 |
+
* **Institute**: University of Information Technology – VNUHCM, Vietnam
|
| 81 |
+
* **Email**: [18521073@gm.uit.edu.vn](mailto:18521073@gm.uit.edu.vn)
|
| 82 |
+
|
| 83 |
+
> If any organization intends to use this dataset for commercial purposes, please contact us at [18521073@gm.uit.edu.vn](mailto:18521073@gm.uit.edu.vn).
|
| 84 |
+
|
| 85 |
+
---
|
| 86 |
+
|
| 87 |
+
### 10. Licensing and Citation
|
| 88 |
+
|
| 89 |
+
#### License
|
| 90 |
+
|
| 91 |
+
Refer to the original repository’s LICENSE. If unspecified, assume **CC BY 4.0**.
|
| 92 |
+
|
| 93 |
+
#### How to Cite
|
| 94 |
+
|
| 95 |
+
**Conference Paper**
|
| 96 |
+
|
| 97 |
+
```bibtex
|
| 98 |
+
@InProceedings{10.1007/978-3-030-82147-0_53,
|
| 99 |
+
author = {Luc Phan, Luong and Pham, Phuc and Nguyen, Kim Thi-Thanh and Huynh, Sieu Khai
|
| 100 |
+
and Nguyen, Tham Thi and Nguyen, Luan Thanh and Huynh, Tin Van and Nguyen, Kiet Van},
|
| 101 |
+
title = {SA2SL: From Aspect-Based Sentiment Analysis to Social Listening System for Business Intelligence},
|
| 102 |
+
booktitle = {Knowledge Science, Engineering and Management},
|
| 103 |
+
year = {2021},
|
| 104 |
+
publisher = {Springer International Publishing},
|
| 105 |
+
pages = {647--658},
|
| 106 |
+
isbn = {978-3-030-82147-0}
|
| 107 |
+
}
|
| 108 |
+
```
|