AnnyNguyen commited on
Commit
7923cbb
·
verified ·
1 Parent(s): 932d9ab

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - text-classification
4
+ language:
5
+ - vi
6
+ ---
7
+ ## Dataset Card for ViSFD
8
+
9
+ ### 1. Dataset Summary
10
+
11
+ **UIT‑ViSFD** is a Vietnamese smartphone‐feedback corpus for **aspect‐based sentiment analysis**. It contains **11,122** human‐annotated comments collected from a major e‑commerce platform, with **10 aspect** categories and **3 sentiment polarities** per comment (positive/neutral/negative). In this unified version, train/dev/test splits have been merged into one CSV with a `type` column indicating the split.
12
+
13
+ ### 2. Supported Tasks and Metrics
14
+
15
+ * **Primary Task**: Multi‐aspect sentiment classification
16
+ * **Metrics**:
17
+
18
+ * **Accuracy** (per‐aspect and overall)
19
+ * **Macro‑averaged F1** (per‐aspect and overall)
20
+
21
+
22
+ ### 3. Languages
23
+
24
+ * Vietnamese
25
+
26
+ ### 4. Dataset Structure
27
+
28
+ | Column | Type | Description |
29
+ | ----------- | ------ | ----------------------------------------------------------------------------------------------- |
30
+ | `comment` | string | The raw user feedback text (Vietnamese). |
31
+ | `n_star` | int | Number of stars given by the user (1–5). |
32
+ | `data_time` | string | Timestamp when the comment was posted. |
33
+ | `label` | string | JSON‐encoded mapping from each of the **10 aspects** to one of `{negative, neutral, positive}`. |
34
+ | `type` | string | Split: `train` / `validation` / `test`. |
35
+ | `dataset` | string | Always `ViSFD` (for provenance). |
36
+
37
+ ### 5. Data Fields
38
+
39
+ * **comment** (`str`): The raw consumer feedback.
40
+ * **n\_star** (`int`): User rating (1–5).
41
+ * **data\_time** (`str`): Posting date/time of the comment.
42
+ * **label** (`str`): A JSON object mapping each aspect to its polarity label.
43
+ * **type** (`str`): Which split the sample belongs to.
44
+ * **dataset** (`str`): Always `ViSFD`.
45
+
46
+
47
+ ### 6. Usage
48
+
49
+ ```python
50
+ from datasets import load_dataset
51
+ import json
52
+
53
+ ds = load_dataset("visolex/visfd")
54
+
55
+ # Separate splits
56
+ train = ds.filter(lambda ex: ex["type"] == "train")
57
+ val = ds.filter(lambda ex: ex["type"] == "dev")
58
+ test = ds.filter(lambda ex: ex["type"] == "test")
59
+
60
+ # Inspect one example
61
+ example = train[0]
62
+ labels = json.loads(example["label"])
63
+ print("Comment:", example["comment"])
64
+ print("Aspects ▶️", labels)
65
+ ```
66
+
67
+
68
+ ### 7. Source & Links
69
+
70
+ * **Original GitHub (data & code)**
71
+ [https://github.com/LuongPhan/UIT-ViSFD](https://github.com/LuongPhan/UIT-ViSFD)
72
+ * **Conference Paper**
73
+ Phan et al. (2021), “SA2SL: From Aspect‑Based Sentiment Analysis to Social Listening System for Business Intelligence” 
74
+
75
+ ---
76
+
77
+ ### 8. Contact Information
78
+
79
+ * **Author**: Luong Luc Phan et al.
80
+ * **Institute**: University of Information Technology – VNUHCM, Vietnam
81
+ * **Email**: [18521073@gm.uit.edu.vn](mailto:18521073@gm.uit.edu.vn)
82
+
83
+ > If any organization intends to use this dataset for commercial purposes, please contact us at [18521073@gm.uit.edu.vn](mailto:18521073@gm.uit.edu.vn).
84
+
85
+ ---
86
+
87
+ ### 10. Licensing and Citation
88
+
89
+ #### License
90
+
91
+ Refer to the original repository’s LICENSE. If unspecified, assume **CC BY 4.0**.
92
+
93
+ #### How to Cite
94
+
95
+ **Conference Paper**
96
+
97
+ ```bibtex
98
+ @InProceedings{10.1007/978-3-030-82147-0_53,
99
+ author = {Luc Phan, Luong and Pham, Phuc and Nguyen, Kim Thi-Thanh and Huynh, Sieu Khai
100
+ and Nguyen, Tham Thi and Nguyen, Luan Thanh and Huynh, Tin Van and Nguyen, Kiet Van},
101
+ title = {SA2SL: From Aspect-Based Sentiment Analysis to Social Listening System for Business Intelligence},
102
+ booktitle = {Knowledge Science, Engineering and Management},
103
+ year = {2021},
104
+ publisher = {Springer International Publishing},
105
+ pages = {647--658},
106
+ isbn = {978-3-030-82147-0}
107
+ }
108
+ ```