|
|
--- |
|
|
tags: |
|
|
- deep-learning |
|
|
- agriculture |
|
|
- vineyards |
|
|
- segmentation |
|
|
- logits |
|
|
license: mit |
|
|
datasets: |
|
|
- dataset_vineyardLogits_sigmoid |
|
|
task_categories: |
|
|
- image-segmentation |
|
|
--- |
|
|
# Vineyard Logits Sigmoid Dataset π |
|
|
|
|
|
## π Overview |
|
|
The **dataset_vineyardLogits_sigmoid** is a collection of **logits and labels** used for training and testing deep learning models in **precision agriculture**. |
|
|
|
|
|
π‘ **Key Details**: |
|
|
- **Binary classification task** with **one class**. |
|
|
- **Sigmoid activation function** used to output probabilities. |
|
|
- **Optimized for distinguishing vine plants from background elements**. |
|
|
|
|
|
This dataset provides valuable logits from models trained on vineyard segmentation tasks, enabling further research and development in precision agriculture. |
|
|
|
|
|
--- |
|
|
|
|
|
## π Hyperparameters |
|
|
|
|
|
The dataset consists of **three distinct datasets** used for **binary classification**. Below are the key hyperparameters used during training and testing: |
|
|
|
|
|
1. **Split Ratio** |
|
|
- The dataset is split **80:20** (80% training, 20% testing). |
|
|
|
|
|
2. **Learning Rate** |
|
|
- Initial **learning rate: 0.001**. |
|
|
|
|
|
3. **Batch Sizes** |
|
|
- **Training batch size**: **30** |
|
|
- **Testing batch size**: **3** |
|
|
- This ensures efficient model training and evaluation. |
|
|
|
|
|
--- |
|
|
|
|
|
## π Dataset Structure |
|
|
|
|
|
```plaintext |
|
|
dataset_vineyardLogits_sigmoid |
|
|
βββ deeplab_EARLY_FUSION_t1 |
|
|
βββ deeplab_EARLY_FUSION_t2 |
|
|
βββ deeplab_EARLY_FUSION_t3 |
|
|
βββ deeplab_GNDVI_t1 |
|
|
βββ deeplab_GNDVI_t2 |
|
|
βββ deeplab_GNDVI_t3 |
|
|
βββ deeplab_NDVI_t1 |
|
|
βββ deeplab_NDVI_t2 |
|
|
βββ deeplab_NDVI_t3 |
|
|
βββ deeplab_RGB_t1 |
|
|
βββ deeplab_RGB_t2 |
|
|
βββ deeplab_RGB_t3 |
|
|
βββ segnet_EARLY_FUSION_t1 |
|
|
βββ segnet_EARLY_FUSION_t2 |
|
|
βββ segnet_EARLY_FUSION_t3 |
|
|
βββ segnet_GNDVI_t1 |
|
|
βββ segnet_GNDVI_t2 |
|
|
βββ segnet_GNDVI_t3 |
|
|
βββ segnet_NDVI_t1 |
|
|
βββ segnet_NDVI_t2 |
|
|
βββ segnet_NDVI_t3 |
|
|
βββ segnet_RGB_t1 |
|
|
βββ segnet_RGB_t2 |
|
|
βββ segnet_RGB_t3 |
|
|
βββ README.md |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Contents |
|
|
|
|
|
- **model_modality_fold_n/pred_masks_train**: Logits from the training set. |
|
|
- **model_modality_fold_n/pred_masks_test**: Logits from the test set. |
|
|
|
|
|
--- |
|
|
|
|
|
## πΈ Data Description |
|
|
|
|
|
- **Model Logits** |
|
|
The dataset consists of logits generated by **DeepLabV3** and **SegNet** during training and testing. These logits are **unnormalized raw scores** before applying the **sigmoid activation function**. |
|
|
|
|
|
- **Original Images** |
|
|
The images originate from aerial multispectral imagery collected from **three vineyards in central Portugal**: |
|
|
- **Quinta de Baixo (QTA)** |
|
|
- **ESAC** |
|
|
- **Valdoeiro (VAL)** |
|
|
|
|
|
β
**Captured at 240x240 resolution** using: |
|
|
- **X7 RGB camera** |
|
|
- **MicaSense Altum multispectral sensor** |
|
|
|
|
|
β
Includes **RGB and Near-Infrared (NIR) bands**, enabling vegetation indices like **NDVI** and **GNDVI**. |
|
|
β
**Ground-truth annotations available** for vineyard segmentation. |
|
|
|
|
|
π **For more details**, refer to the dataset: |
|
|
[Cybonic, "DL Vineyard Segmentation Study," v1.0, GitHub, 2024](https://github.com/Cybonic/DL_vineyard_segmentation_study) |
|
|
|
|
|
--- |
|
|
|
|
|
## π₯ How to Use |
|
|
|
|
|
### **1οΈβ£ Load in Python** |
|
|
To load the dataset directly from Hugging Face: |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
dataset = load_dataset("wilgomoreira/dataset_vineyardLogits_sigmoid") |
|
|
print(dataset) |
|
|
``` |
|
|
|
|
|
### **2οΈβ£ Download Specific Files** |
|
|
To download a specific file: |
|
|
|
|
|
```bash |
|
|
wget https://huggingface.co/datasets/seu-usuario/dataset_vineyardLogits_sigmoid/resolve/main/logits_train.npz |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π License |
|
|
This dataset is released under the **MIT License**. |
|
|
Please make sure to comply with the license terms when using this dataset. |
|
|
|
|
|
--- |
|
|
|
|
|
## π Acknowledgments |
|
|
This dataset was created by **Wilgo Cardoso** for research in **precision agriculture and deep learning segmentation**. |
|
|
|
|
|
--- |
|
|
|
|
|
## π§ Contact |
|
|
For any questions or collaborations, please contact: |
|
|
βοΈ **wilgo.moreira@isr.uc.pt** |