wilgomoreira's picture
Upload folder using huggingface_hub
365a9f2 verified
---
tags:
- deep-learning
- agriculture
- vineyards
- segmentation
- logits
license: mit
datasets:
- dataset_vineyardLogits_sigmoid
task_categories:
- image-segmentation
---
# Vineyard Logits Sigmoid Dataset πŸ‡
## πŸ“Œ Overview
The **dataset_vineyardLogits_sigmoid** is a collection of **logits and labels** used for training and testing deep learning models in **precision agriculture**.
πŸ’‘ **Key Details**:
- **Binary classification task** with **one class**.
- **Sigmoid activation function** used to output probabilities.
- **Optimized for distinguishing vine plants from background elements**.
This dataset provides valuable logits from models trained on vineyard segmentation tasks, enabling further research and development in precision agriculture.
---
## πŸ“Š Hyperparameters
The dataset consists of **three distinct datasets** used for **binary classification**. Below are the key hyperparameters used during training and testing:
1. **Split Ratio**
- The dataset is split **80:20** (80% training, 20% testing).
2. **Learning Rate**
- Initial **learning rate: 0.001**.
3. **Batch Sizes**
- **Training batch size**: **30**
- **Testing batch size**: **3**
- This ensures efficient model training and evaluation.
---
## πŸ“‚ Dataset Structure
```plaintext
dataset_vineyardLogits_sigmoid
β”œβ”€β”€ deeplab_EARLY_FUSION_t1
β”œβ”€β”€ deeplab_EARLY_FUSION_t2
β”œβ”€β”€ deeplab_EARLY_FUSION_t3
β”œβ”€β”€ deeplab_GNDVI_t1
β”œβ”€β”€ deeplab_GNDVI_t2
β”œβ”€β”€ deeplab_GNDVI_t3
β”œβ”€β”€ deeplab_NDVI_t1
β”œβ”€β”€ deeplab_NDVI_t2
β”œβ”€β”€ deeplab_NDVI_t3
β”œβ”€β”€ deeplab_RGB_t1
β”œβ”€β”€ deeplab_RGB_t2
β”œβ”€β”€ deeplab_RGB_t3
β”œβ”€β”€ segnet_EARLY_FUSION_t1
β”œβ”€β”€ segnet_EARLY_FUSION_t2
β”œβ”€β”€ segnet_EARLY_FUSION_t3
β”œβ”€β”€ segnet_GNDVI_t1
β”œβ”€β”€ segnet_GNDVI_t2
β”œβ”€β”€ segnet_GNDVI_t3
β”œβ”€β”€ segnet_NDVI_t1
β”œβ”€β”€ segnet_NDVI_t2
β”œβ”€β”€ segnet_NDVI_t3
β”œβ”€β”€ segnet_RGB_t1
β”œβ”€β”€ segnet_RGB_t2
β”œβ”€β”€ segnet_RGB_t3
└── README.md
```
---
## πŸ“‘ Contents
- **model_modality_fold_n/pred_masks_train**: Logits from the training set.
- **model_modality_fold_n/pred_masks_test**: Logits from the test set.
---
## πŸ“Έ Data Description
- **Model Logits**
The dataset consists of logits generated by **DeepLabV3** and **SegNet** during training and testing. These logits are **unnormalized raw scores** before applying the **sigmoid activation function**.
- **Original Images**
The images originate from aerial multispectral imagery collected from **three vineyards in central Portugal**:
- **Quinta de Baixo (QTA)**
- **ESAC**
- **Valdoeiro (VAL)**
βœ… **Captured at 240x240 resolution** using:
- **X7 RGB camera**
- **MicaSense Altum multispectral sensor**
βœ… Includes **RGB and Near-Infrared (NIR) bands**, enabling vegetation indices like **NDVI** and **GNDVI**.
βœ… **Ground-truth annotations available** for vineyard segmentation.
πŸ“Œ **For more details**, refer to the dataset:
[Cybonic, "DL Vineyard Segmentation Study," v1.0, GitHub, 2024](https://github.com/Cybonic/DL_vineyard_segmentation_study)
---
## πŸ“₯ How to Use
### **1️⃣ Load in Python**
To load the dataset directly from Hugging Face:
```python
from datasets import load_dataset
dataset = load_dataset("wilgomoreira/dataset_vineyardLogits_sigmoid")
print(dataset)
```
### **2️⃣ Download Specific Files**
To download a specific file:
```bash
wget https://huggingface.co/datasets/seu-usuario/dataset_vineyardLogits_sigmoid/resolve/main/logits_train.npz
```
---
## πŸ›  License
This dataset is released under the **MIT License**.
Please make sure to comply with the license terms when using this dataset.
---
## πŸ™Œ Acknowledgments
This dataset was created by **Wilgo Cardoso** for research in **precision agriculture and deep learning segmentation**.
---
## πŸ“§ Contact
For any questions or collaborations, please contact:
βœ‰οΈ **wilgo.moreira@isr.uc.pt**