yhoma commited on
Commit
d075df0
·
verified ·
1 Parent(s): 767d072

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - graph-ml
5
+ - tabular-classification
6
+ pretty_name: Elliptic Bitcoin Dataset
7
+ tags:
8
+ - bitcoin
9
+ - fraud-detection
10
+ - graph-neural-networks
11
+ - cryptocurrency
12
+ size_categories:
13
+ - 100K<n<1M
14
+ ---
15
+
16
+ # Elliptic Bitcoin Dataset
17
+
18
+ ## Dataset Description
19
+
20
+ This is the Elliptic Bitcoin dataset used for illicit transaction detection in cryptocurrency networks. The dataset contains Bitcoin transaction data with labeled illicit and licit transactions.
21
+
22
+ ### Dataset Structure
23
+
24
+ The dataset consists of three CSV files:
25
+
26
+ 1. **elliptic_txs_features.csv**: Transaction features (166 features per transaction)
27
+ - 94 local features (derived from transaction information)
28
+ - 72 aggregated features (derived from one-hop neighbors)
29
+
30
+ 2. **elliptic_txs_classes.csv**: Transaction labels
31
+ - `1` = illicit (ransomware, scam, etc.)
32
+ - `2` = licit (exchanges, services, etc.)
33
+ - `unknown` = unlabeled transactions
34
+
35
+ 3. **elliptic_txs_edgelist.csv**: Transaction graph edges
36
+ - Directed edges representing Bitcoin flows between transactions
37
+
38
+ ### Dataset Statistics
39
+
40
+ - **Total transactions**: 203,769
41
+ - **Labeled illicit**: ~4,545 transactions
42
+ - **Labeled licit**: ~42,019 transactions
43
+ - **Unlabeled**: ~157,205 transactions
44
+ - **Time steps**: 49 (representing different time periods)
45
+
46
+ ### Citation
47
+
48
+ If you use this dataset, please cite the original paper:
49
+
50
+ ```bibtex
51
+ @inproceedings{weber2019anti,
52
+ title={Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics},
53
+ author={Weber, Mark and Domeniconi, Giacomo and Chen, Jie and Weidele, Daniel Karl I and Bellei, Claudio and Robinson, Tom and Leiserson, Charles E},
54
+ booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
55
+ pages={1954--1964},
56
+ year={2019}
57
+ }
58
+ ```
59
+
60
+ ### Usage
61
+
62
+ ```python
63
+ from datasets import load_dataset
64
+
65
+ # Load the dataset
66
+ dataset = load_dataset("yhoma/elliptic-bitcoin-dataset")
67
+
68
+ # Access the CSV files
69
+ features_df = pd.read_csv("hf://datasets/yhoma/elliptic-bitcoin-dataset/elliptic_txs_features.csv", header=None)
70
+ classes_df = pd.read_csv("hf://datasets/yhoma/elliptic-bitcoin-dataset/elliptic_txs_classes.csv")
71
+ edges_df = pd.read_csv("hf://datasets/yhoma/elliptic-bitcoin-dataset/elliptic_txs_edgelist.csv")
72
+ ```
73
+
74
+ ### License
75
+
76
+ This dataset is released under the MIT License.
77
+
78
+ ### Additional Information
79
+
80
+ - **Original Source**: [Elliptic Data Set](https://www.kaggle.com/ellipticco/elliptic-data-set)
81
+ - **Task**: Binary classification (illicit vs. licit transactions)
82
+ - **Suitable for**: Graph Neural Networks, LSTM, traditional ML models