--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 282523ce-aa44-49cc-8655-e39347714767 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ec21aab84e140f6a_train_data.json ds_type: json field: question path: /workspace/input_data/ec21aab84e140f6a_train_data.json type: completion debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dzanbek/282523ce-aa44-49cc-8655-e39347714767 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 15 micro_batch_size: 2 mlflow_experiment_name: /tmp/ec21aab84e140f6a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 282523ce-aa44-49cc-8655-e39347714767 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 282523ce-aa44-49cc-8655-e39347714767 warmup_steps: 5 weight_decay: 0.1 xformers_attention: true ```

# 282523ce-aa44-49cc-8655-e39347714767 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1851 | 0.0667 | 1 | 3.4427 | | 3.0665 | 0.1333 | 2 | 3.4427 | | 3.1378 | 0.2667 | 4 | 3.4238 | | 2.9626 | 0.4 | 6 | 3.3261 | | 2.5797 | 0.5333 | 8 | 3.1238 | | 3.2081 | 0.6667 | 10 | 2.9539 | | 2.6883 | 0.8 | 12 | 2.8665 | | 2.5641 | 0.9333 | 14 | 2.8339 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1