--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3b560dce-4b9a-4461-bec5-e809c217723b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataloader_num_workers: 6 dataset_prepared_path: null datasets: - data_files: - 824ef92913906b02_train_data.json ds_type: json format: custom path: /workspace/input_data/824ef92913906b02_train_data.json type: field_input: gt_answer field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: error577/3b560dce-4b9a-4461-bec5-e809c217723b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2000 micro_batch_size: 2 mlflow_experiment_name: /tmp/824ef92913906b02_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.02 wandb_entity: null wandb_mode: online wandb_name: edbc27c0-2567-4ef1-849f-694fac00cd13 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: edbc27c0-2567-4ef1-849f-694fac00cd13 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 3b560dce-4b9a-4461-bec5-e809c217723b This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6086 | 0.0001 | 1 | 0.8242 | | 0.6491 | 0.0069 | 50 | 0.5668 | | 0.4904 | 0.0137 | 100 | 0.5020 | | 0.4928 | 0.0206 | 150 | 0.4803 | | 0.3963 | 0.0275 | 200 | 0.4617 | | 0.4291 | 0.0343 | 250 | 0.4514 | | 0.4164 | 0.0412 | 300 | 0.4411 | | 0.4261 | 0.0481 | 350 | 0.4344 | | 0.4734 | 0.0549 | 400 | 0.4273 | | 0.4271 | 0.0618 | 450 | 0.4246 | | 0.3362 | 0.0687 | 500 | 0.4193 | | 0.3781 | 0.0755 | 550 | 0.4136 | | 0.4247 | 0.0824 | 600 | 0.4107 | | 0.3431 | 0.0893 | 650 | 0.4071 | | 0.3674 | 0.0961 | 700 | 0.4019 | | 0.4549 | 0.1030 | 750 | 0.4004 | | 0.4299 | 0.1098 | 800 | 0.3972 | | 0.3398 | 0.1167 | 850 | 0.3938 | | 0.4542 | 0.1236 | 900 | 0.3924 | | 0.301 | 0.1304 | 950 | 0.3908 | | 0.4517 | 0.1373 | 1000 | 0.3881 | | 0.4243 | 0.1442 | 1050 | 0.3865 | | 0.3469 | 0.1510 | 1100 | 0.3853 | | 0.3413 | 0.1579 | 1150 | 0.3834 | | 0.3609 | 0.1648 | 1200 | 0.3815 | | 0.3546 | 0.1716 | 1250 | 0.3813 | | 0.2967 | 0.1785 | 1300 | 0.3794 | | 0.3278 | 0.1854 | 1350 | 0.3783 | | 0.3304 | 0.1922 | 1400 | 0.3782 | | 0.2565 | 0.1991 | 1450 | 0.3774 | | 0.3721 | 0.2060 | 1500 | 0.3764 | | 0.4291 | 0.2128 | 1550 | 0.3754 | | 0.299 | 0.2197 | 1600 | 0.3757 | | 0.4525 | 0.2266 | 1650 | 0.3750 | | 0.3902 | 0.2334 | 1700 | 0.3747 | | 0.3118 | 0.2403 | 1750 | 0.3737 | | 0.3434 | 0.2472 | 1800 | 0.3747 | | 0.3902 | 0.2540 | 1850 | 0.3732 | | 0.3748 | 0.2609 | 1900 | 0.3742 | | 0.3463 | 0.2678 | 1950 | 0.3742 | | 0.3441 | 0.2746 | 2000 | 0.3736 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1