--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e5c7898a-4409-476c-b0e6-2048d1c3b9c8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora base_model: unsloth/SmolLM-1.7B-Instruct bf16: true chat_template: llama3 dataloader_num_workers: 6 dataset_prepared_path: null datasets: - data_files: - b4d50b4ebb62bd26_train_data.json ds_type: json format: custom path: /workspace/input_data/b4d50b4ebb62bd26_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: error577/e5c7898a-4409-476c-b0e6-2048d1c3b9c8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 128 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1000 auto_resume_from_checkpoints: true micro_batch_size: 2 mlflow_experiment_name: /tmp/b4d50b4ebb62bd26_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.002 wandb_entity: null wandb_mode: online wandb_name: b8be9756-84be-4b64-aa93-937f8a9f4691 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b8be9756-84be-4b64-aa93-937f8a9f4691 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# e5c7898a-4409-476c-b0e6-2048d1c3b9c8 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.23 | 0.0000 | 1 | 1.0243 | | 0.8101 | 0.0014 | 50 | 0.9230 | | 0.6549 | 0.0028 | 100 | 1.0666 | | 0.7171 | 0.0042 | 150 | 0.8552 | | 0.606 | 0.0056 | 200 | 0.7939 | | 0.5582 | 0.0069 | 250 | 0.7649 | | 0.7431 | 0.0083 | 300 | 0.7490 | | 0.7017 | 0.0097 | 350 | 0.7206 | | 0.7743 | 0.0111 | 400 | 0.7006 | | 0.507 | 0.0125 | 450 | 0.6939 | | 0.5217 | 0.0139 | 500 | 0.6911 | | 0.7122 | 0.0153 | 550 | 0.7409 | | 0.6526 | 0.0167 | 600 | 0.7192 | | 0.5694 | 0.0181 | 650 | 0.7097 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1