Upload ai_msgbot_gpt_j_6b_8bit_with_hub.py
Browse files
ai_msgbot_gpt_j_6b_8bit_with_hub.py
ADDED
|
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""ai-msgbot-gpt-j-6b-8bit with hub.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/12IXeac5sEUL7dX2bQfB8BZ46lHwK8-dT
|
| 8 |
+
|
| 9 |
+
# <center> ai-msgbot - conversational 6B GPT-J 8bit demo
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
> This notebook demos interaction with a 6B GPT-J finetuned for dialogue via methods in [ai-msgbot](https://github.com/pszemraj/ai-msgbot)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
By [Peter](https://github.com/pszemraj). This notebook and `ai-msgbot` are [licensed under creative commons](https://github.com/pszemraj/ai-msgbot/blob/main/LICENSE). Models trained on given datasets are subject to those datasets' licenses.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## usage
|
| 19 |
+
|
| 20 |
+
1. select the checkpoint of the model to use for generation in the `model_checkpoint` dropdown
|
| 21 |
+
2. Run all cells to load everything
|
| 22 |
+
3. adjust the prompt fields at the bottom of the notebook to whatever you want, see how AI responds.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
A fine-tuning example etc. will come _eventually_
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
# setup
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
#@markdown setup logging
|
| 34 |
+
import logging
|
| 35 |
+
from pathlib import Path
|
| 36 |
+
for handler in logging.root.handlers[:]:
|
| 37 |
+
logging.root.removeHandler(handler)
|
| 38 |
+
|
| 39 |
+
das_logfile = Path.cwd() / "8bit_inference.log"
|
| 40 |
+
|
| 41 |
+
logging.basicConfig(
|
| 42 |
+
level=logging.INFO,
|
| 43 |
+
filename=das_logfile,
|
| 44 |
+
filemode='w',
|
| 45 |
+
format="%(asctime)s %(levelname)s %(message)s",
|
| 46 |
+
datefmt="%m/%d/%Y %I:%M:%S",
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
#@markdown add auto-Colab formatting with `IPython.display`
|
| 50 |
+
from IPython.display import HTML, display
|
| 51 |
+
# colab formatting
|
| 52 |
+
def set_css():
|
| 53 |
+
display(
|
| 54 |
+
HTML(
|
| 55 |
+
"""
|
| 56 |
+
<style>
|
| 57 |
+
pre {
|
| 58 |
+
white-space: pre-wrap;
|
| 59 |
+
}
|
| 60 |
+
</style>
|
| 61 |
+
"""
|
| 62 |
+
)
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
get_ipython().events.register("pre_run_cell", set_css)
|
| 66 |
+
|
| 67 |
+
from pathlib import Path
|
| 68 |
+
|
| 69 |
+
"""### GPU info"""
|
| 70 |
+
|
| 71 |
+
!nvidia-smi
|
| 72 |
+
|
| 73 |
+
"""## install and import
|
| 74 |
+
|
| 75 |
+
_this notebook uses a specific version of `torch` which can take a while to install._
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
!pip install transformers==4.24.0 -q
|
| 79 |
+
!pip install bitsandbytes==0.32.2 -q
|
| 80 |
+
!pip install datasets==1.16.1 -q
|
| 81 |
+
!pip install torch==1.11 -q
|
| 82 |
+
!pip install accelerate==0.12.0 -q
|
| 83 |
+
!pip install pysbd==0.3.4 -q
|
| 84 |
+
|
| 85 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 86 |
+
# %%capture
|
| 87 |
+
# import transformers
|
| 88 |
+
#
|
| 89 |
+
# import pandas as pd
|
| 90 |
+
#
|
| 91 |
+
# import torch
|
| 92 |
+
# import torch.nn.functional as F
|
| 93 |
+
# from torch import nn
|
| 94 |
+
# from torch.cuda.amp import custom_fwd, custom_bwd
|
| 95 |
+
#
|
| 96 |
+
# import bitsandbytes as bnb
|
| 97 |
+
# from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
|
| 98 |
+
#
|
| 99 |
+
# from tqdm.auto import tqdm
|
| 100 |
+
|
| 101 |
+
#@markdown utils
|
| 102 |
+
from transformers.utils.logging import set_verbosity
|
| 103 |
+
|
| 104 |
+
set_verbosity(40)
|
| 105 |
+
|
| 106 |
+
import warnings
|
| 107 |
+
# ignore hf pipeline complaints
|
| 108 |
+
warnings.filterwarnings("ignore", category=UserWarning, module='transformers')
|
| 109 |
+
|
| 110 |
+
"""## Converting the model to 8 bits
|
| 111 |
+
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
#@title define 8bit classes
|
| 115 |
+
|
| 116 |
+
#@markdown - bitsandbytes lib
|
| 117 |
+
class FrozenBNBLinear(nn.Module):
|
| 118 |
+
def __init__(self, weight, absmax, code, bias=None):
|
| 119 |
+
assert isinstance(bias, nn.Parameter) or bias is None
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.out_features, self.in_features = weight.shape
|
| 122 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
| 123 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
| 124 |
+
self.register_buffer("code", code.requires_grad_(False))
|
| 125 |
+
self.adapter = None
|
| 126 |
+
self.bias = bias
|
| 127 |
+
|
| 128 |
+
def forward(self, input):
|
| 129 |
+
output = DequantizeAndLinear.apply(
|
| 130 |
+
input, self.weight, self.absmax, self.code, self.bias
|
| 131 |
+
)
|
| 132 |
+
if self.adapter:
|
| 133 |
+
output += self.adapter(input)
|
| 134 |
+
return output
|
| 135 |
+
|
| 136 |
+
@classmethod
|
| 137 |
+
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
|
| 138 |
+
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
|
| 139 |
+
return cls(weights_int8, *state, linear.bias)
|
| 140 |
+
|
| 141 |
+
def __repr__(self):
|
| 142 |
+
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class DequantizeAndLinear(torch.autograd.Function):
|
| 146 |
+
@staticmethod
|
| 147 |
+
@custom_fwd
|
| 148 |
+
def forward(
|
| 149 |
+
ctx,
|
| 150 |
+
input: torch.Tensor,
|
| 151 |
+
weights_quantized: torch.ByteTensor,
|
| 152 |
+
absmax: torch.FloatTensor,
|
| 153 |
+
code: torch.FloatTensor,
|
| 154 |
+
bias: torch.FloatTensor,
|
| 155 |
+
):
|
| 156 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
| 157 |
+
ctx.save_for_backward(input, weights_quantized, absmax, code)
|
| 158 |
+
ctx._has_bias = bias is not None
|
| 159 |
+
return F.linear(input, weights_deq, bias)
|
| 160 |
+
|
| 161 |
+
@staticmethod
|
| 162 |
+
@custom_bwd
|
| 163 |
+
def backward(ctx, grad_output: torch.Tensor):
|
| 164 |
+
assert (
|
| 165 |
+
not ctx.needs_input_grad[1]
|
| 166 |
+
and not ctx.needs_input_grad[2]
|
| 167 |
+
and not ctx.needs_input_grad[3]
|
| 168 |
+
)
|
| 169 |
+
input, weights_quantized, absmax, code = ctx.saved_tensors
|
| 170 |
+
# grad_output: [*batch, out_features]
|
| 171 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
| 172 |
+
grad_input = grad_output @ weights_deq
|
| 173 |
+
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
|
| 174 |
+
return grad_input, None, None, None, grad_bias
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class FrozenBNBEmbedding(nn.Module):
|
| 178 |
+
def __init__(self, weight, absmax, code):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.num_embeddings, self.embedding_dim = weight.shape
|
| 181 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
| 182 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
| 183 |
+
self.register_buffer("code", code.requires_grad_(False))
|
| 184 |
+
self.adapter = None
|
| 185 |
+
|
| 186 |
+
def forward(self, input, **kwargs):
|
| 187 |
+
with torch.no_grad():
|
| 188 |
+
# note: both quantuized weights and input indices are *not* differentiable
|
| 189 |
+
weight_deq = dequantize_blockwise(
|
| 190 |
+
self.weight, absmax=self.absmax, code=self.code
|
| 191 |
+
)
|
| 192 |
+
output = F.embedding(input, weight_deq, **kwargs)
|
| 193 |
+
if self.adapter:
|
| 194 |
+
output += self.adapter(input)
|
| 195 |
+
return output
|
| 196 |
+
|
| 197 |
+
@classmethod
|
| 198 |
+
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
|
| 199 |
+
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
|
| 200 |
+
return cls(weights_int8, *state)
|
| 201 |
+
|
| 202 |
+
def __repr__(self):
|
| 203 |
+
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2**20):
|
| 207 |
+
assert chunk_size % 4096 == 0
|
| 208 |
+
code = None
|
| 209 |
+
chunks = []
|
| 210 |
+
absmaxes = []
|
| 211 |
+
flat_tensor = matrix.view(-1)
|
| 212 |
+
for i in range((matrix.numel() - 1) // chunk_size + 1):
|
| 213 |
+
input_chunk = flat_tensor[i * chunk_size : (i + 1) * chunk_size].clone()
|
| 214 |
+
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(
|
| 215 |
+
input_chunk, code=code
|
| 216 |
+
)
|
| 217 |
+
chunks.append(quantized_chunk)
|
| 218 |
+
absmaxes.append(absmax_chunk)
|
| 219 |
+
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
|
| 220 |
+
absmax = torch.cat(absmaxes)
|
| 221 |
+
return matrix_i8, (absmax, code)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def convert_to_int8(model):
|
| 225 |
+
"""Convert linear and embedding modules to 8-bit with optional adapters"""
|
| 226 |
+
for module in list(model.modules()):
|
| 227 |
+
for name, child in module.named_children():
|
| 228 |
+
if isinstance(child, nn.Linear):
|
| 229 |
+
print(name, child)
|
| 230 |
+
setattr(
|
| 231 |
+
module,
|
| 232 |
+
name,
|
| 233 |
+
FrozenBNBLinear(
|
| 234 |
+
weight=torch.zeros(
|
| 235 |
+
child.out_features, child.in_features, dtype=torch.uint8
|
| 236 |
+
),
|
| 237 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
| 238 |
+
code=torch.zeros(256),
|
| 239 |
+
bias=child.bias,
|
| 240 |
+
),
|
| 241 |
+
)
|
| 242 |
+
elif isinstance(child, nn.Embedding):
|
| 243 |
+
setattr(
|
| 244 |
+
module,
|
| 245 |
+
name,
|
| 246 |
+
FrozenBNBEmbedding(
|
| 247 |
+
weight=torch.zeros(
|
| 248 |
+
child.num_embeddings, child.embedding_dim, dtype=torch.uint8
|
| 249 |
+
),
|
| 250 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
| 251 |
+
code=torch.zeros(256),
|
| 252 |
+
),
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
#@markdown Patch GPT-J before loading:
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
|
| 259 |
+
def __init__(self, config):
|
| 260 |
+
super().__init__(config)
|
| 261 |
+
|
| 262 |
+
convert_to_int8(self.attn)
|
| 263 |
+
convert_to_int8(self.mlp)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
|
| 267 |
+
def __init__(self, config):
|
| 268 |
+
super().__init__(config)
|
| 269 |
+
convert_to_int8(self)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
|
| 273 |
+
def __init__(self, config):
|
| 274 |
+
super().__init__(config)
|
| 275 |
+
convert_to_int8(self)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock
|
| 279 |
+
|
| 280 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 281 |
+
# %%capture
|
| 282 |
+
# #@markdown `add_adapters()`
|
| 283 |
+
#
|
| 284 |
+
# def add_adapters(model, adapter_dim=4, p = 0.1):
|
| 285 |
+
# assert adapter_dim > 0
|
| 286 |
+
#
|
| 287 |
+
# for name, module in model.named_modules():
|
| 288 |
+
# if isinstance(module, FrozenBNBLinear):
|
| 289 |
+
# if "attn" in name or "mlp" in name or "head" in name:
|
| 290 |
+
# print("Adding adapter to", name)
|
| 291 |
+
# module.adapter = nn.Sequential(
|
| 292 |
+
# nn.Linear(module.in_features, adapter_dim, bias=False),
|
| 293 |
+
# nn.Dropout(p=p),
|
| 294 |
+
# nn.Linear(adapter_dim, module.out_features, bias=False),
|
| 295 |
+
# )
|
| 296 |
+
# print("Initializing", name)
|
| 297 |
+
# nn.init.zeros_(module.adapter[2].weight)
|
| 298 |
+
#
|
| 299 |
+
# else:
|
| 300 |
+
# print("Not adding adapter to", name)
|
| 301 |
+
# elif isinstance(module, FrozenBNBEmbedding):
|
| 302 |
+
# print("Adding adapter to", name)
|
| 303 |
+
# module.adapter = nn.Sequential(
|
| 304 |
+
# nn.Embedding(module.num_embeddings, adapter_dim),
|
| 305 |
+
# nn.Dropout(p=p),
|
| 306 |
+
# nn.Linear(adapter_dim, module.embedding_dim, bias=False),
|
| 307 |
+
# )
|
| 308 |
+
# print("Initializing", name)
|
| 309 |
+
# nn.init.zeros_(module.adapter[2].weight)
|
| 310 |
+
#
|
| 311 |
+
|
| 312 |
+
#@markdown set up config
|
| 313 |
+
config = transformers.GPTJConfig.from_pretrained("hivemind/gpt-j-6B-8bit")
|
| 314 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
| 315 |
+
config.pad_token_id = config.eos_token_id
|
| 316 |
+
tokenizer.pad_token = config.pad_token_id
|
| 317 |
+
|
| 318 |
+
"""# load model
|
| 319 |
+
|
| 320 |
+
"""
|
| 321 |
+
|
| 322 |
+
from contextlib import contextmanager
|
| 323 |
+
import sys, os, gc
|
| 324 |
+
import logging
|
| 325 |
+
from tqdm.auto import tqdm
|
| 326 |
+
#@markdown define `load_8bit_from_hub()`
|
| 327 |
+
|
| 328 |
+
@contextmanager
|
| 329 |
+
def suppress_stdout():
|
| 330 |
+
with open(os.devnull, "w") as devnull:
|
| 331 |
+
old_stdout = sys.stdout
|
| 332 |
+
sys.stdout = devnull
|
| 333 |
+
try:
|
| 334 |
+
yield
|
| 335 |
+
finally:
|
| 336 |
+
sys.stdout = old_stdout
|
| 337 |
+
|
| 338 |
+
def load_8bit_from_hub(model_id:str, **kwargs):
|
| 339 |
+
pbar = tqdm(desc="instantiating model..", total=3)
|
| 340 |
+
|
| 341 |
+
with suppress_stdout():
|
| 342 |
+
gc.collect()
|
| 343 |
+
model = GPTJForCausalLM.from_pretrained(model_id,
|
| 344 |
+
device_map='auto',
|
| 345 |
+
low_cpu_mem_usage=True,
|
| 346 |
+
**kwargs)
|
| 347 |
+
pbar.update()
|
| 348 |
+
add_adapters(model)
|
| 349 |
+
pbar.update()
|
| 350 |
+
model = model.to("cuda" if torch.cuda.is_available() else -1)
|
| 351 |
+
pbar.update()
|
| 352 |
+
return model
|
| 353 |
+
|
| 354 |
+
from huggingface_hub import notebook_login
|
| 355 |
+
|
| 356 |
+
notebook_login()
|
| 357 |
+
|
| 358 |
+
model_name = "ethzanalytics/gpt-j-8bit-KILT_WoW_10k_steps" #@param ["ethzanalytics/gpt-j-8bit-KILT_WoW_10k_steps"]
|
| 359 |
+
|
| 360 |
+
# load_8bit_from_hub() is a wrapper around AutoModel.from_pretrained() and will
|
| 361 |
+
# passthrough all kwargs to that
|
| 362 |
+
model = load_8bit_from_hub(model_name, use_auth_token=True, )
|
| 363 |
+
|
| 364 |
+
"""# generate text
|
| 365 |
+
|
| 366 |
+
## standard generation
|
| 367 |
+
`
|
| 368 |
+
|
| 369 |
+
with torch:
|
| 370 |
+
|
| 371 |
+
> with "standard" generation it's recommended to put the **speaker token labels** at the end of your prompt so the model "knows" to respond.
|
| 372 |
+
|
| 373 |
+
i.e `Person Alpha:` or `Person Beta:` for these two models.
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
prompt = "Person Alpha: what is the theory of being \"woke\" all about?\\n Person Beta: " # @param {type:"string"}
|
| 377 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 378 |
+
with torch.no_grad():
|
| 379 |
+
prompt = tokenizer(prompt, return_tensors="pt")
|
| 380 |
+
prompt = {key: value.to(device) for key, value in prompt.items()}
|
| 381 |
+
out = model.generate(
|
| 382 |
+
**prompt,
|
| 383 |
+
min_length=24,
|
| 384 |
+
max_length=96,
|
| 385 |
+
top_k=30,
|
| 386 |
+
top_p=0.9,
|
| 387 |
+
temperature=0.4,
|
| 388 |
+
do_sample=True,
|
| 389 |
+
repetition_penalty=1.2,
|
| 390 |
+
no_repeat_ngram_size=3,
|
| 391 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 392 |
+
)
|
| 393 |
+
result = tokenizer.decode(
|
| 394 |
+
out[0],
|
| 395 |
+
remove_invalid_values=True,
|
| 396 |
+
skip_special_tokens=True,
|
| 397 |
+
clean_up_tokenization_spaces=True,
|
| 398 |
+
)
|
| 399 |
+
result
|
| 400 |
+
|
| 401 |
+
"""---
|
| 402 |
+
|
| 403 |
+
## 'Extract' bot response
|
| 404 |
+
- transformers `pipeline` object
|
| 405 |
+
- generate with better params
|
| 406 |
+
- extract the bot's response with `get_bot_response()` - start to use [ai-msgbot](https://github.com/pszemraj/ai-msgbot) _like it was meant to be used_
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
from transformers import pipeline
|
| 410 |
+
|
| 411 |
+
generator = pipeline(
|
| 412 |
+
"text-generation",
|
| 413 |
+
model=model,
|
| 414 |
+
tokenizer="EleutherAI/gpt-j-6B",
|
| 415 |
+
device= 0 if torch.cuda.is_available() else -1,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
"""### generation functions
|
| 419 |
+
|
| 420 |
+
for extracting the response, beam search vs. sampling, etc
|
| 421 |
+
"""
|
| 422 |
+
|
| 423 |
+
# @markdown `get_bot_response(name_resp: str, model_resp: list, name_spk: str, verbose: bool = False)`
|
| 424 |
+
# @markdown - this extracts the response from "Person Beta" from the total generation
|
| 425 |
+
import pysbd
|
| 426 |
+
|
| 427 |
+
seg = pysbd.Segmenter(language="en", clean=False)
|
| 428 |
+
|
| 429 |
+
import re
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
def split_sentences(text, use_regex=False, min_len=2):
|
| 433 |
+
"""given a string, splits it into sentences based on punctuation marks."""
|
| 434 |
+
|
| 435 |
+
if use_regex:
|
| 436 |
+
sentences = re.split(r'(?<=[.!?]) +', string)
|
| 437 |
+
else:
|
| 438 |
+
# https://github.com/nipunsadvilkar/pySBD
|
| 439 |
+
sentences = seg.segment(text)
|
| 440 |
+
return [s.strip() for s in sentences if len(s.strip()) > min_len]
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def validate_response(response_text):
|
| 444 |
+
|
| 445 |
+
if isinstance(response_text, list):
|
| 446 |
+
|
| 447 |
+
return response_text
|
| 448 |
+
# if len(response_text) > 1 else split_sentences(str(response_text))
|
| 449 |
+
elif isinstance(response_text, str):
|
| 450 |
+
return split_sentences(response_text)
|
| 451 |
+
else:
|
| 452 |
+
raise ValueError(f"response input {response_text} not a list or str..")
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def get_bot_response(
|
| 456 |
+
name_resp: str, model_resp: list, name_spk: str, verbose: bool = False
|
| 457 |
+
):
|
| 458 |
+
"""
|
| 459 |
+
get_bot_response - gets the bot response to a prompt, checking to ensure that additional statements by the "speaker" are not included in the response.
|
| 460 |
+
Args:
|
| 461 |
+
name_resp (str): the name of the responder
|
| 462 |
+
model_resp (list): the model response
|
| 463 |
+
name_spk (str): the name of the speaker
|
| 464 |
+
verbose (bool, optional): Defaults to False.
|
| 465 |
+
Returns:
|
| 466 |
+
bot_response (str): the bot response, isolated down to just text without the "name tokens" or further messages from the speaker.
|
| 467 |
+
"""
|
| 468 |
+
|
| 469 |
+
model_resp = validate_response(model_resp)
|
| 470 |
+
logging.info(f"isolating response from:\t{model_resp}")
|
| 471 |
+
fn_resp = []
|
| 472 |
+
|
| 473 |
+
name_counter = 0
|
| 474 |
+
break_safe = False
|
| 475 |
+
for resline in model_resp:
|
| 476 |
+
if name_resp.lower() in resline.lower():
|
| 477 |
+
name_counter += 1
|
| 478 |
+
break_safe = True
|
| 479 |
+
continue
|
| 480 |
+
if ":" in resline and name_resp.lower() not in resline.lower():
|
| 481 |
+
break
|
| 482 |
+
if name_spk.lower() in resline.lower() and not break_safe:
|
| 483 |
+
break
|
| 484 |
+
else:
|
| 485 |
+
fn_resp.append(resline)
|
| 486 |
+
if verbose:
|
| 487 |
+
print("the full response is:\n")
|
| 488 |
+
print("\n".join(fn_resp))
|
| 489 |
+
if isinstance(fn_resp, list):
|
| 490 |
+
fn_resp = fn_resp[0] if len(fn_resp) == 1 else " ".join(fn_resp)
|
| 491 |
+
return fn_resp
|
| 492 |
+
|
| 493 |
+
import pprint as pp
|
| 494 |
+
|
| 495 |
+
# @markdown define `generate_sampling(prompt: str, ...)`
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
def generate_sampling(
|
| 499 |
+
prompt: str,
|
| 500 |
+
suffix:str=None,
|
| 501 |
+
temperature=0.4,
|
| 502 |
+
top_k: int = 40,
|
| 503 |
+
top_p=0.90,
|
| 504 |
+
min_length: int = 16,
|
| 505 |
+
max_length: int = 128,
|
| 506 |
+
no_repeat_ngram_size: int = 3,
|
| 507 |
+
repetition_penalty=1.5,
|
| 508 |
+
return_full_text=False,
|
| 509 |
+
verbose=False,
|
| 510 |
+
**kwargs,
|
| 511 |
+
) -> None:
|
| 512 |
+
|
| 513 |
+
logging.info(f"generating results for input:\n\t{prompt}\n\t...")
|
| 514 |
+
if verbose:
|
| 515 |
+
print(f"generating results for input:\n\t{prompt}\n\t...")
|
| 516 |
+
prompt = f"{prompt}{suffix}" if suffix is not None else prompt
|
| 517 |
+
|
| 518 |
+
_prompt_tokens = len(generator.tokenizer(prompt).input_ids)
|
| 519 |
+
result = generator(
|
| 520 |
+
prompt,
|
| 521 |
+
min_length=min_length+_prompt_tokens,
|
| 522 |
+
temperature=temperature,
|
| 523 |
+
top_k=top_k,
|
| 524 |
+
top_p=top_p,
|
| 525 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 526 |
+
repetition_penalty=repetition_penalty,
|
| 527 |
+
remove_invalid_values=True,
|
| 528 |
+
clean_up_tokenization_spaces=True,
|
| 529 |
+
do_sample=True,
|
| 530 |
+
return_full_text=return_full_text,
|
| 531 |
+
max_new_tokens=max_length+_prompt_tokens,
|
| 532 |
+
pad_token_id=generator.tokenizer.eos_token_id,
|
| 533 |
+
**kwargs,
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
output = result[0]["generated_text"]
|
| 537 |
+
logging.info(f"model output:\n\t{output}")
|
| 538 |
+
if verbose:
|
| 539 |
+
print(f"model output:\n\t{output}")
|
| 540 |
+
response = get_bot_response(
|
| 541 |
+
model_resp=output,
|
| 542 |
+
name_spk="Person Alpha",
|
| 543 |
+
name_resp="Person Beta",
|
| 544 |
+
verbose=False,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
logging.info(f"extracted bot response:\n\t{response}")
|
| 548 |
+
|
| 549 |
+
pp.pprint(response)
|
| 550 |
+
|
| 551 |
+
return response
|
| 552 |
+
|
| 553 |
+
import pprint as pp
|
| 554 |
+
|
| 555 |
+
#@markdown define `generate_beams(prompt: str, num_beams:int =4, ...)`
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
def generate_beams(
|
| 559 |
+
prompt: str,
|
| 560 |
+
suffix:str=None,
|
| 561 |
+
num_beams=4,
|
| 562 |
+
min_length: int = 32,
|
| 563 |
+
max_length: int = 128,
|
| 564 |
+
no_repeat_ngram_size: int = 3,
|
| 565 |
+
repetition_penalty=2.5,
|
| 566 |
+
return_full_text=False,
|
| 567 |
+
verbose=False,
|
| 568 |
+
**kwargs,
|
| 569 |
+
) -> None:
|
| 570 |
+
|
| 571 |
+
logging.info(f"generating results for input:\n\t{prompt}\n\t...")
|
| 572 |
+
if verbose:
|
| 573 |
+
print(f"generating results for input:\n\t{prompt}\n\t")
|
| 574 |
+
|
| 575 |
+
prompt = f"{prompt}{suffix}" if suffix is not None else prompt
|
| 576 |
+
_prompt_tokens = len(generator.tokenizer(prompt).input_ids)
|
| 577 |
+
result = generator(
|
| 578 |
+
prompt,
|
| 579 |
+
min_length=min_length+_prompt_tokens,
|
| 580 |
+
num_beams=num_beams,
|
| 581 |
+
do_sample=False,
|
| 582 |
+
early_stopping=True,
|
| 583 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 584 |
+
repetition_penalty=repetition_penalty,
|
| 585 |
+
remove_invalid_values=True,
|
| 586 |
+
clean_up_tokenization_spaces=True,
|
| 587 |
+
return_full_text=return_full_text,
|
| 588 |
+
max_new_tokens=max_length+_prompt_tokens,
|
| 589 |
+
pad_token_id=generator.tokenizer.eos_token_id,
|
| 590 |
+
**kwargs,
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
output = result[0]["generated_text"]
|
| 594 |
+
logging.info(f"model output:\n\t{output}")
|
| 595 |
+
if verbose:
|
| 596 |
+
print(f"model output:\n\t{output}")
|
| 597 |
+
response = get_bot_response(
|
| 598 |
+
model_resp=output,
|
| 599 |
+
name_spk="Person Alpha",
|
| 600 |
+
name_resp="Person Beta",
|
| 601 |
+
verbose=False,
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
logging.info(f"extracted bot response:\n\t{response}")
|
| 606 |
+
|
| 607 |
+
pp.pprint(response)
|
| 608 |
+
|
| 609 |
+
return response
|
| 610 |
+
|
| 611 |
+
import pprint as pp
|
| 612 |
+
|
| 613 |
+
#@markdown define `generate_csearch(prompt: str, num_beams:int =4, ...)`
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
def generate_csearch(
|
| 617 |
+
prompt: str,
|
| 618 |
+
suffix:str=None,
|
| 619 |
+
max_length: int = 96,
|
| 620 |
+
min_length: int = 24,
|
| 621 |
+
penalty_alpha: float=0.6,
|
| 622 |
+
top_k: int=5,
|
| 623 |
+
return_full_text=False,
|
| 624 |
+
verbose=False,
|
| 625 |
+
**kwargs,
|
| 626 |
+
) -> None:
|
| 627 |
+
|
| 628 |
+
logging.info(f"generating results for input:\n\t{prompt}\n\t...")
|
| 629 |
+
if verbose:
|
| 630 |
+
print(f"generating results for input:\n\t{prompt}\n\t")
|
| 631 |
+
|
| 632 |
+
prompt = f"{prompt}{suffix}" if suffix is not None else prompt
|
| 633 |
+
_prompt_tokens = len(generator.tokenizer(prompt).input_ids)
|
| 634 |
+
result = generator(
|
| 635 |
+
prompt,
|
| 636 |
+
min_length=min_length+_prompt_tokens,
|
| 637 |
+
max_new_tokens=max_length,
|
| 638 |
+
penalty_alpha=penalty_alpha,
|
| 639 |
+
top_k=top_k,
|
| 640 |
+
remove_invalid_values=True,
|
| 641 |
+
clean_up_tokenization_spaces=True,
|
| 642 |
+
return_full_text=return_full_text,
|
| 643 |
+
pad_token_id=generator.tokenizer.eos_token_id,
|
| 644 |
+
**kwargs,
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
output = result[0]["generated_text"]
|
| 648 |
+
logging.info(f"model output:\n\t{output}")
|
| 649 |
+
if verbose:
|
| 650 |
+
print(f"model output:\n\t{output}")
|
| 651 |
+
response = get_bot_response(
|
| 652 |
+
model_resp=output,
|
| 653 |
+
name_spk="Person Alpha",
|
| 654 |
+
name_resp="Person Beta",
|
| 655 |
+
verbose=False,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
logging.info(f"extracted bot response:\n\t{response}")
|
| 660 |
+
|
| 661 |
+
pp.pprint(response)
|
| 662 |
+
|
| 663 |
+
return response
|
| 664 |
+
|
| 665 |
+
"""### generate - sampling
|
| 666 |
+
|
| 667 |
+
> **NOTE:** that here the `suffix="\nPerson Beta: ",` is passed so it does not need to be added to a prompt
|
| 668 |
+
"""
|
| 669 |
+
|
| 670 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 671 |
+
# %%time
|
| 672 |
+
#
|
| 673 |
+
# prompt = "How do we harness space energy?" #@param {type:"string"}
|
| 674 |
+
# temperature = 0.2 #@param {type:"slider", min:0.1, max:1, step:0.1}
|
| 675 |
+
# top_k = 30 #@param {type:"slider", min:10, max:60, step:10}
|
| 676 |
+
#
|
| 677 |
+
#
|
| 678 |
+
# result = generate_sampling(
|
| 679 |
+
# prompt,
|
| 680 |
+
# suffix="\nPerson Beta: ",
|
| 681 |
+
# max_length=128,
|
| 682 |
+
# min_length=32,
|
| 683 |
+
# temperature=temperature,
|
| 684 |
+
# top_k=top_k,
|
| 685 |
+
# )
|
| 686 |
+
#
|
| 687 |
+
|
| 688 |
+
prompt = "What is the purpose of life?" # @param {type:"string"}
|
| 689 |
+
temperature = 0.5 # @param {type:"slider", min:0.1, max:1, step:0.1}
|
| 690 |
+
top_k = 30 # @param {type:"slider", min:10, max:60, step:10}
|
| 691 |
+
|
| 692 |
+
generated_result = generate_sampling(
|
| 693 |
+
prompt,
|
| 694 |
+
temperature=temperature,
|
| 695 |
+
top_k=top_k,
|
| 696 |
+
min_length=32,
|
| 697 |
+
suffix="\nPerson Beta: ",
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
"""### generate - beam search"""
|
| 701 |
+
|
| 702 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 703 |
+
# %%time
|
| 704 |
+
# prompt = "How was your day?" #@param {type:"string"}
|
| 705 |
+
# num_beams = 4 #@param {type:"slider", min:2, max:10, step:2}
|
| 706 |
+
# min_length = 16 #@param {type:"slider", min:8, max:128, step:8}
|
| 707 |
+
#
|
| 708 |
+
# generated_result = generate_beams(
|
| 709 |
+
# prompt,
|
| 710 |
+
# suffix="\nPerson Beta: ",
|
| 711 |
+
# min_length=min_length,
|
| 712 |
+
# num_beams=num_beams,
|
| 713 |
+
# )
|
| 714 |
+
|
| 715 |
+
"""### generate - contrastive search"""
|
| 716 |
+
|
| 717 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 718 |
+
# %%time
|
| 719 |
+
# prompt = "What do you do for fun?" #@param {type:"string"}
|
| 720 |
+
# top_k = 4 #@param {type:"slider", min:2, max:10, step:2}
|
| 721 |
+
# penalty_alpha = 0.6 #@param {type:"slider", min:0, max:1, step:0.1}
|
| 722 |
+
# min_length = 8 #@param {type:"slider", min:8, max:128, step:8}
|
| 723 |
+
#
|
| 724 |
+
# generated_result = generate_csearch(
|
| 725 |
+
# prompt,
|
| 726 |
+
# suffix="\nPerson Beta: ",
|
| 727 |
+
# min_length=min_length,
|
| 728 |
+
# penalty_alpha=penalty_alpha,
|
| 729 |
+
# top_k=top_k,
|
| 730 |
+
# num_beams=num_beams,
|
| 731 |
+
# )
|
| 732 |
+
|