Add `notebook.ipynb` to the model repo
Browse filesHey hey, this would allow users to directly open a customised model inference notebook that users can use to play with the model.
Try it by going on Use this model -> Google Colab/ Kaggle directly
You can find more details about this feature here: https://huggingface.co/docs/hub/en/notebooks
- notebook.ipynb +157 -0
notebook.ipynb
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": [],
|
| 7 |
+
"gpuType": "T4"
|
| 8 |
+
},
|
| 9 |
+
"kernelspec": {
|
| 10 |
+
"name": "python3",
|
| 11 |
+
"display_name": "Python 3"
|
| 12 |
+
},
|
| 13 |
+
"language_info": {
|
| 14 |
+
"name": "python"
|
| 15 |
+
},
|
| 16 |
+
"accelerator": "GPU"
|
| 17 |
+
},
|
| 18 |
+
"cells": [
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"source": [
|
| 22 |
+
"# Use VJEPA 2"
|
| 23 |
+
],
|
| 24 |
+
"metadata": {
|
| 25 |
+
"id": "02ruu54h4yLc"
|
| 26 |
+
}
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "markdown",
|
| 30 |
+
"source": [
|
| 31 |
+
"V-JEPA 2 is a new open 1.2B video embedding model by Meta, which attempts to capture the physical world modelling through video ⏯️\n",
|
| 32 |
+
"\n",
|
| 33 |
+
"The model can be used for various tasks for video: fine-tuning for downstream tasks like video classification, or any task involving embeddings (similarity, retrieval and more!).\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"You can check all V-JEPA 2 checkpoints and the datasets that come with this release [in this collection](https://huggingface.co/collections/facebook/v-jepa-2-6841bad8413014e185b497a6)."
|
| 36 |
+
],
|
| 37 |
+
"metadata": {
|
| 38 |
+
"id": "ol0IGYCd4hg4"
|
| 39 |
+
}
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "markdown",
|
| 43 |
+
"source": [
|
| 44 |
+
"We need to install transformers' release specific branch."
|
| 45 |
+
],
|
| 46 |
+
"metadata": {
|
| 47 |
+
"id": "kIIBxYOA41Ga"
|
| 48 |
+
}
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "code",
|
| 52 |
+
"source": [
|
| 53 |
+
"!pip install -q git+https://github.com/huggingface/transformers@v4.52.4-VJEPA-2-preview"
|
| 54 |
+
],
|
| 55 |
+
"metadata": {
|
| 56 |
+
"id": "4D4D1hC940yX"
|
| 57 |
+
},
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"outputs": []
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"source": [
|
| 64 |
+
"from huggingface_hub import login # to later push the model\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"login()"
|
| 67 |
+
],
|
| 68 |
+
"metadata": {
|
| 69 |
+
"id": "Ne2rU68Ep1On"
|
| 70 |
+
},
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"outputs": []
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "markdown",
|
| 76 |
+
"source": [
|
| 77 |
+
"As of now, Colab supports torchcodec==0.2.1 which supports torch==2.6.0."
|
| 78 |
+
],
|
| 79 |
+
"metadata": {
|
| 80 |
+
"id": "dJWXmFu53Ap6"
|
| 81 |
+
}
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"source": [
|
| 86 |
+
"!pip install -q torch==2.6.0 torchvision==0.21.0\n",
|
| 87 |
+
"!pip install -q torchcodec==0.2.1\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"import torch\n",
|
| 90 |
+
"print(\"Torch:\", torch.__version__)\n",
|
| 91 |
+
"from torchcodec.decoders import VideoDecoder # verify"
|
| 92 |
+
],
|
| 93 |
+
"metadata": {
|
| 94 |
+
"id": "JIoq84ze2_Ls"
|
| 95 |
+
},
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"outputs": []
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "markdown",
|
| 101 |
+
"source": [
|
| 102 |
+
"## Initialize the model and the processor"
|
| 103 |
+
],
|
| 104 |
+
"metadata": {
|
| 105 |
+
"id": "-7OATf5S20U_"
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"cell_type": "code",
|
| 110 |
+
"source": [
|
| 111 |
+
"from transformers import AutoVideoProcessor, AutoModel\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"hf_repo = \"facebook/vjepa2-vith-fpc64-256\"\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"model = AutoModel.from_pretrained(hf_repo).to(\"cuda\")\n",
|
| 116 |
+
"processor = AutoVideoProcessor.from_pretrained(hf_repo)"
|
| 117 |
+
],
|
| 118 |
+
"metadata": {
|
| 119 |
+
"id": "K8oSsy7Y2zQK"
|
| 120 |
+
},
|
| 121 |
+
"execution_count": null,
|
| 122 |
+
"outputs": []
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"cell_type": "markdown",
|
| 126 |
+
"source": [
|
| 127 |
+
"## Extract video embeddings from the model"
|
| 128 |
+
],
|
| 129 |
+
"metadata": {
|
| 130 |
+
"id": "ZJ_DUR9f22Uc"
|
| 131 |
+
}
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"source": [
|
| 136 |
+
"import torch\n",
|
| 137 |
+
"from torchcodec.decoders import VideoDecoder\n",
|
| 138 |
+
"import numpy as np\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"video_url = \"https://huggingface.co/datasets/nateraw/kinetics-mini/resolve/main/val/archery/-Qz25rXdMjE_000014_000024.mp4\"\n",
|
| 141 |
+
"vr = VideoDecoder(video_url)\n",
|
| 142 |
+
"frame_idx = np.arange(0, 64) # choosing some frames. here, you can define more complex sampling strategy\n",
|
| 143 |
+
"video = vr.get_frames_at(indices=frame_idx).data # T x C x H x W\n",
|
| 144 |
+
"video = processor(video, return_tensors=\"pt\").to(model.device)\n",
|
| 145 |
+
"with torch.no_grad():\n",
|
| 146 |
+
" video_embeddings = model.get_vision_features(**video)\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"print(video_embeddings.shape)"
|
| 149 |
+
],
|
| 150 |
+
"metadata": {
|
| 151 |
+
"id": "kAgWZJHt24px"
|
| 152 |
+
},
|
| 153 |
+
"execution_count": null,
|
| 154 |
+
"outputs": []
|
| 155 |
+
}
|
| 156 |
+
]
|
| 157 |
+
}
|