--- license: mit base_model: nlpie/tiny-clinicalbert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: tiny-clinicalbert-medical-text-classification results: [] --- # tiny-clinicalbert-medical-text-classification This model is a fine-tuned version of [nlpie/tiny-clinicalbert](https://huggingface.co/nlpie/tiny-clinicalbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1588 - Accuracy: 0.236 - Precision: 0.2048 - Recall: 0.236 - F1: 0.2109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.9902 | 1.0 | 250 | 3.0201 | 0.274 | 0.0880 | 0.274 | 0.1318 | | 2.4558 | 2.0 | 500 | 2.6033 | 0.341 | 0.1392 | 0.341 | 0.1922 | | 2.4627 | 3.0 | 750 | 2.4332 | 0.368 | 0.2003 | 0.368 | 0.2252 | | 2.2983 | 4.0 | 1000 | 2.3126 | 0.365 | 0.2212 | 0.365 | 0.2495 | | 2.1395 | 5.0 | 1250 | 2.2385 | 0.349 | 0.2100 | 0.349 | 0.2518 | | 1.8919 | 6.0 | 1500 | 2.1892 | 0.339 | 0.2176 | 0.339 | 0.2490 | | 1.9892 | 7.0 | 1750 | 2.1364 | 0.336 | 0.2310 | 0.336 | 0.2643 | | 1.8569 | 8.0 | 2000 | 2.1441 | 0.321 | 0.2316 | 0.321 | 0.2532 | | 1.9182 | 9.0 | 2250 | 2.1263 | 0.309 | 0.2185 | 0.309 | 0.2417 | | 1.6594 | 10.0 | 2500 | 2.1234 | 0.262 | 0.2180 | 0.262 | 0.2245 | | 1.5966 | 11.0 | 2750 | 2.1176 | 0.256 | 0.2149 | 0.256 | 0.2197 | | 1.6185 | 12.0 | 3000 | 2.1578 | 0.243 | 0.2126 | 0.243 | 0.2140 | | 1.3881 | 13.0 | 3250 | 2.1588 | 0.236 | 0.2048 | 0.236 | 0.2109 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2