--- library_name: peft license: apache-2.0 base_model: openai/whisper-base tags: - base_model:adapter:openai/whisper-base - lora - transformers metrics: - wer model-index: - name: whisper-small-finetuned-multilingual-on-kaggle results: [] --- # whisper-small-finetuned-multilingual-on-kaggle This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6732 - Wer: 191.2033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0 | 0 | 2.0460 | 162.1874 | | 0.3398 | 2.2523 | 1000 | 1.8079 | 181.3942 | | 0.3015 | 4.5045 | 2000 | 1.7287 | 176.3787 | | 0.2972 | 6.7568 | 3000 | 1.6952 | 184.4728 | | 0.2783 | 9.0090 | 4000 | 1.6783 | 183.3356 | | 0.2877 | 11.2613 | 5000 | 1.6732 | 191.2033 | ### Framework versions - PEFT 0.17.1 - Transformers 4.56.1 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.22.0