zhiyuan8 commited on
Commit
2124101
·
verified ·
1 Parent(s): c718604

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,138 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - BlinkDL/rwkv7-g1
4
+ language:
5
+ - en
6
+ - zh
7
+ - ja
8
+ - ko
9
+ - fr
10
+ - ar
11
+ - es
12
+ - pt
13
+ license: apache-2.0
14
+ metrics:
15
+ - accuracy
16
+ pipeline_tag: text-generation
17
+ library_name: transformers
18
+ ---
19
+
20
+ # rwkv7-0.1B-g1a
21
+
22
+ <!-- Provide a quick summary of what the model is/does. -->
23
+
24
+ This is RWKV-7 g1 model under flash-linear attention format. The `g1` model series added significant more data and incorporated deep thinking abilities.
25
+
26
+ ## Model Details
27
+
28
+
29
+ ### Model Description
30
+
31
+ <!-- Provide a longer summary of what this model is. -->
32
+
33
+ - **Developed by:** Bo Peng, Yu Zhang, Songlin Yang, Ruichong Zhang
34
+ - **Funded by:** RWKV Project (Under LF AI & Data Foundation)
35
+ - **Model type:** RWKV7
36
+ - **Language(s) (NLP):** Multilingal
37
+ - **License:** Apache-2.0
38
+ - **Parameter count:** 191M
39
+ - **Tokenizer:** RWKV World tokenizer
40
+ - **Vocabulary size:** 65,536
41
+
42
+ ### Model Sources
43
+
44
+ <!-- Provide the basic links for the model. -->
45
+
46
+ - **Repository:** https://github.com/fla-org/flash-linear-attention ; https://github.com/BlinkDL/RWKV-LM
47
+ - **Paper:** https://arxiv.org/abs/2503.14456
48
+
49
+ ## Uses
50
+
51
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
52
+ Install `flash-linear-attention` and the latest version of `transformers` before using this model:
53
+
54
+ ```bash
55
+ pip install git+https://github.com/fla-org/flash-linear-attention
56
+ pip install 'transformers>=4.48.0'
57
+ ```
58
+
59
+ ### Direct Use
60
+
61
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
62
+ You can use this model just as any other HuggingFace models:
63
+ ```python
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer
65
+ model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-0.1B-g1a', trust_remote_code=True)
66
+ tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-0.1B-g1a', trust_remote_code=True)
67
+ model = model.cuda() # Supported on Nvidia/AMD/Intel eg. model.xpu()
68
+ prompt = "What is a large language model?"
69
+ messages = [
70
+ {"role": "user", "content": prompt}
71
+ ]
72
+ text = tokenizer.apply_chat_template(
73
+ messages,
74
+ tokenize=False,
75
+ add_generation_prompt=True,
76
+ enable_thinking=True # Default is True, set to False to disable thinking
77
+ )
78
+
79
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
80
+ generated_ids = model.generate(
81
+ **model_inputs,
82
+ max_new_tokens=1024,
83
+ do_sample=True,
84
+ temperature=1.0,
85
+ top_p=0.3,
86
+ repetition_penalty=1.2
87
+ )
88
+ generated_ids = [
89
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
90
+ ]
91
+
92
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0]
93
+ print(response)
94
+ ```
95
+
96
+
97
+ ## FAQ
98
+ Q: safetensors metadata is none.
99
+
100
+ A: upgrade transformers to >=4.48.0: `pip install 'transformers>=4.48.0'`
101
+
102
+ ## Thinking Prompt
103
+ ```
104
+ <|rwkv_tokenizer_end_of_text|>User: <Your Question Here>
105
+
106
+ Assistant: <think
107
+ ```
108
+ Don't close the brackets for `<think`!
109
+
110
+ ## Addidtional Caveats for Prompting
111
+
112
+ **Always add `<|rwkv_tokenizer_end_of_text|>` (Token ID = 0) before your prompt. The model is incapable of attending the first token it receives due to state initialization issues.**
113
+
114
+ Bad prompt example:
115
+ ```
116
+ Mathews lifted a dark brow. "Are you sure about that? I mean, wouldn't it be better to wait until Dale is home safe and sound?"
117
+
118
+ "The longer I wait to tell her, the worse it will be for both of us."
119
+
120
+ "Good luck. You're going to need it," said
121
+ ```
122
+ The model is unable to recall ` Mathews` because it is the very first token of the input.
123
+
124
+ Good prompt example:
125
+ ```
126
+ <|rwkv_tokenizer_end_of_text|>Mathews lifted a dark brow. "Are you sure about that? I mean, wouldn't it be better to wait until Dale is home safe and sound?"
127
+
128
+ "The longer I wait to tell her, the worse it will be for both of us."
129
+
130
+ "Good luck. You're going to need it," said
131
+ ```
132
+ the model will output ` Mathews` as expected.
133
+
134
+ Without this token: **`lambada_openai ppl=13.84 acc=48.13%`**
135
+
136
+ With this token added: **`lambada_openai ppl=12.36 acc=49.12%`**
137
+
138
+ Note: this phenomenon is very rare for Transformers but significant for RNNs. We speculate that the model uses the first token to pin the states, to better acquire information from later tokens.
__init__.py ADDED
File without changes
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<|rwkv_tokenizer_end_of_text|>": 0
3
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "a_low_rank_dim": 64,
3
+ "architectures": [
4
+ "RWKV7ForCausalLM"
5
+ ],
6
+ "attn": null,
7
+ "attn_mode": "chunk",
8
+ "auto_map": {
9
+ "AutoConfig": "modeling_rwkv7.RWKV7Config",
10
+ "AutoModel": "modeling_rwkv7.RWKV7Model",
11
+ "AutoModelForCausalLM": "modeling_rwkv7.RWKV7ForCausalLM"
12
+ },
13
+ "bos_token_id": 0,
14
+ "decay_low_rank_dim": 64,
15
+ "eos_token_id": 0,
16
+ "fuse_cross_entropy": true,
17
+ "fuse_norm": false,
18
+ "gate_low_rank_dim": 128,
19
+ "head_dim": 64,
20
+ "hidden_act": "sqrelu",
21
+ "hidden_ratio": 4.0,
22
+ "hidden_size": 768,
23
+ "initializer_range": 0.006,
24
+ "intermediate_size": 3072,
25
+ "max_position_embeddings": 2048,
26
+ "model_type": "rwkv7",
27
+ "norm_bias": true,
28
+ "norm_eps": 1e-05,
29
+ "norm_first": true,
30
+ "num_heads": 32,
31
+ "num_hidden_layers": 12,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.48.0",
35
+ "use_cache": true,
36
+ "v_low_rank_dim": 32,
37
+ "vocab_size": 65536
38
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.48.0"
6
+ }
hf_rwkv_tokenizer.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for RWKV."""
16
+
17
+ import os
18
+ import re
19
+ from typing import TYPE_CHECKING, List, Optional, Tuple
20
+
21
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
+ from transformers.utils import logging
23
+
24
+
25
+ if TYPE_CHECKING:
26
+ pass
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "rwkv_vocab_v20230424.txt",
33
+ }
34
+
35
+ class TRIE:
36
+ __slots__ = tuple("ch,to,values,front".split(","))
37
+ to: list
38
+ values: set
39
+
40
+ def __init__(self, front=None, ch=None):
41
+ self.ch = ch
42
+ self.to = [None for ch in range(256)]
43
+ self.values = set()
44
+ self.front = front
45
+
46
+ def __repr__(self):
47
+ fr = self
48
+ ret = []
49
+ while fr != None:
50
+ if fr.ch != None:
51
+ ret.append(fr.ch)
52
+ fr = fr.front
53
+ return "<TRIE %s %s>" % (ret[::-1], self.values)
54
+
55
+ def add(self, key: bytes, idx: int = 0, val=None):
56
+ if idx == len(key):
57
+ if val is None:
58
+ val = key
59
+ self.values.add(val)
60
+ return self
61
+ ch = key[idx]
62
+ if self.to[ch] is None:
63
+ self.to[ch] = TRIE(front=self, ch=ch)
64
+ return self.to[ch].add(key, idx=idx + 1, val=val)
65
+
66
+ def find_longest(self, key: bytes, idx: int = 0):
67
+ u: TRIE = self
68
+ ch: int = key[idx]
69
+
70
+ while u.to[ch] is not None:
71
+ u = u.to[ch]
72
+ idx += 1
73
+ if u.values:
74
+ ret = idx, u, u.values
75
+ if idx == len(key):
76
+ break
77
+ ch = key[idx]
78
+ return ret
79
+
80
+
81
+ class RWKV_TOKENIZER:
82
+ def __init__(self, file_name):
83
+ self.idx2token = {}
84
+ sorted = [] # must be already sorted
85
+ with open(file_name, "r", encoding="utf-8") as f:
86
+ lines = f.readlines()
87
+ for l in lines:
88
+ idx = int(l[: l.index(" ")])
89
+ x = eval(l[l.index(" ") : l.rindex(" ")])
90
+ x = x.encode("utf-8") if isinstance(x, str) else x
91
+ assert isinstance(x, bytes)
92
+
93
+ assert len(x) == int(l[l.rindex(" ") :])
94
+ sorted += [x]
95
+ self.idx2token[idx] = x
96
+
97
+ self.token2idx = {}
98
+ for k, v in self.idx2token.items():
99
+ self.token2idx[v] = int(k)
100
+
101
+ self.root = TRIE()
102
+ for t, i in self.token2idx.items():
103
+ _ = self.root.add(t, val=(t, i))
104
+
105
+ def encodeBytes(self, src: bytes):
106
+ idx: int = 0
107
+ tokens = []
108
+ while idx < len(src):
109
+ _idx: int = idx
110
+ idx, _, values = self.root.find_longest(src, idx)
111
+ assert idx != _idx
112
+ _, token = next(iter(values))
113
+ tokens.append(token)
114
+ return tokens
115
+
116
+ def decodeBytes(self, tokens):
117
+ return b"".join(map(lambda i: self.idx2token[i], tokens))
118
+
119
+ def encode(self, src):
120
+ if isinstance(src, str):
121
+ return [self.encodeBytes(src.encode("utf-8"))]
122
+ elif isinstance(src, list):
123
+ return [self.encodeBytes(s.encode("utf-8")) for s in src]
124
+
125
+ def decode(self, tokens):
126
+ return [self.decodeBytes(batch).decode("utf-8") for batch in tokens]
127
+ # try:
128
+ # return self.decodeBytes(tokens).decode('utf-8')
129
+ # except:
130
+ # return '\ufffd' # bad utf-8
131
+
132
+ def printTokens(self, tokens):
133
+ for i in tokens:
134
+ s = self.idx2token[i]
135
+ try:
136
+ s = s.decode("utf-8")
137
+ except:
138
+ pass
139
+ print(f"{repr(s)}{i}", end=" ")
140
+ print()
141
+
142
+
143
+ class RwkvTokenizer(PreTrainedTokenizer):
144
+ vocab_files_names = VOCAB_FILES_NAMES
145
+ model_input_names = ["input_ids", "attention_mask"]
146
+
147
+ def __init__(
148
+ self, vocab_file, bos_token="<|rwkv_tokenizer_end_of_text|>", eos_token="<|rwkv_tokenizer_end_of_text|>", unk_token="<|rwkv_tokenizer_end_of_text|>", **kwargs
149
+ ):
150
+ if not os.path.isfile(vocab_file):
151
+ raise ValueError(
152
+ f"Can't find a vocabulary file at path '{vocab_file}'."
153
+ )
154
+
155
+ with open(vocab_file, "r", encoding="utf-8") as reader:
156
+ tokens = reader.readlines()
157
+
158
+ if "add_bos_token" in kwargs:
159
+ self.add_bos_token = kwargs["add_bos_token"]
160
+ else:
161
+ self.add_bos_token = False
162
+ self.trie_tokenizer = RWKV_TOKENIZER(vocab_file)
163
+ vocab = self.trie_tokenizer.token2idx
164
+ self.encoder = vocab
165
+ self.decoder = {v: k for k, v in vocab.items()}
166
+ self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
167
+ super().__init__(
168
+ bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
169
+ )
170
+
171
+ @property
172
+ def vocab_size(self):
173
+ return len(self.encoder)
174
+
175
+ def get_vocab(self):
176
+ vocab = self.encoder
177
+ vocab.update(self.added_tokens_encoder)
178
+ vocab = dict(sorted(vocab.items(), key=lambda item: item[1]))
179
+ return vocab
180
+
181
+ def _tokenize(self, text, split_special_tokens=False):
182
+ # return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
183
+ return self.trie_tokenizer.encode(text)[0]
184
+
185
+ def _convert_token_to_id(self, token):
186
+ return token
187
+
188
+ def _convert_id_to_token(self, index):
189
+ """Converts an index (integer) in a token (byte) using the vocab."""
190
+ token = self.decoder.get(index, self.unk_token)
191
+ if isinstance(token, (bytes)):
192
+ token = token.decode("utf-8", errors="replace")
193
+ return token
194
+
195
+ def convert_tokens_to_string(self, tokens):
196
+ """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
197
+ out_string = b"".join(
198
+ [k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]
199
+ ).decode("utf-8")
200
+ return out_string
201
+
202
+ def save_vocabulary(
203
+ self, save_directory: str, filename_prefix: Optional[str] = None
204
+ ) -> Tuple[str]:
205
+ index = 0
206
+ if os.path.isdir(save_directory):
207
+ vocab_file = os.path.join(
208
+ save_directory,
209
+ (filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
210
+ )
211
+ else:
212
+ vocab_file = (
213
+ filename_prefix + "-" if filename_prefix else ""
214
+ ) + save_directory
215
+ with open(vocab_file, "w", encoding="utf-8") as writer:
216
+ for token, token_index in sorted(
217
+ self.encoder.items(), key=lambda kv: kv[1]
218
+ ):
219
+ if index != token_index:
220
+ logger.warning(
221
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
222
+ " Please check that the vocabulary is not corrupted!"
223
+ )
224
+ index = token_index
225
+ writer.write(str(token) + "\n")
226
+ index += 1
227
+ return (vocab_file,)
228
+
229
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
230
+ if self.add_bos_token:
231
+ bos_token_ids = [self.bos_token_id]
232
+ else:
233
+ bos_token_ids = []
234
+
235
+ output = bos_token_ids + token_ids_0
236
+
237
+ if token_ids_1 is None:
238
+ return output
239
+
240
+ return output + bos_token_ids + token_ids_1
241
+
242
+ def get_special_tokens_mask(
243
+ self,
244
+ token_ids_0: List[int],
245
+ token_ids_1: Optional[List[int]] = None,
246
+ already_has_special_tokens: bool = False,
247
+ ) -> List[int]:
248
+ """
249
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
250
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
251
+
252
+ Args:
253
+ token_ids_0 (`List[int]`):
254
+ List of IDs.
255
+ token_ids_1 (`List[int]`, *optional*):
256
+ Optional second list of IDs for sequence pairs.
257
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
258
+ Whether or not the token list is already formatted with special tokens for the model.
259
+
260
+ Returns:
261
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
262
+ """
263
+ if already_has_special_tokens:
264
+ return super().get_special_tokens_mask(
265
+ token_ids_0=token_ids_0,
266
+ token_ids_1=token_ids_1,
267
+ already_has_special_tokens=True,
268
+ )
269
+
270
+ if not self.add_bos_token:
271
+ return super().get_special_tokens_mask(
272
+ token_ids_0=token_ids_0,
273
+ token_ids_1=token_ids_1,
274
+ already_has_special_tokens=False,
275
+ )
276
+
277
+ if token_ids_1 is None:
278
+ return [1] + ([0] * len(token_ids_0))
279
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:569ad97767a155676c15b3357cd00d4fd1b0dff21b8533fc07a0917d45e00176
3
+ size 382111072
modeling_rwkv7.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from fla.models.rwkv7 import RWKV7ForCausalLM, RWKV7Model, RWKV7Config
2
+ RWKV7ForCausalLM = RWKV7ForCausalLM
3
+ RWKV7Model = RWKV7Model
4
+ RWKV7Config = RWKV7Config
rwkv_vocab_v20230424.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|rwkv_tokenizer_end_of_text|>",
3
+ "eos_token": "\n\n",
4
+ "unk_token": "<|rwkv_tokenizer_end_of_text|>",
5
+ "pad_token": "<|rwkv_tokenizer_end_of_text|>"
6
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|rwkv_tokenizer_end_of_text|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ }
12
+ },
13
+ "auto_map": {
14
+ "AutoTokenizer": [
15
+ "hf_rwkv_tokenizer.RwkvTokenizer",
16
+ null
17
+ ]
18
+ },
19
+ "bos_token": "<|rwkv_tokenizer_end_of_text|>",
20
+ "pad_token": "<|rwkv_tokenizer_end_of_text|>",
21
+ "clean_up_tokenization_spaces": false,
22
+ "eos_token": "\n\n",
23
+ "model_max_length": 1000000000000000019884624838656,
24
+ "tokenizer_class": "RwkvTokenizer",
25
+ "unk_token": "<|rwkv_tokenizer_end_of_text|>",
26
+ "use_fast": false,
27
+ "chat_template": "{{ '<|rwkv_tokenizer_end_of_text|>' }}{% for message in messages %}{% if message['role'] == 'user' %}{{'User: ' + message['content'] + '\n\n'}}{% elif message['role'] == 'system' %}{{'System: ' + message['content'] + '\n\n'}}{% elif message['role'] == 'assistant' %}{{'Assistant: ' + message['content'] + '\n\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{% if enable_thinking is defined and enable_thinking == False %}{{ 'Assistant: <think>\n</think>' }}{% else %}{{ 'Assistant: <think' }}{% endif %}{% endif %}"
28
+ }