# SIB200 CDA Model with Gemma This model was trained on the SIB200 dataset using Counterfactual Data Augmentation (CDA) with counterfactuals generated by Gemma. ## Training Parameters - **Dataset**: SIB200 - **Mode**: CDA - **Selection Model**: Gemma - **Selection Method**: Random - **Train Size**: 700 examples - **Epochs**: 20 - **Batch Size**: 8 - **Effective Batch Size**: 32 (batch_size * gradient_accumulation_steps) - **Learning Rate**: 8e-06 - **Patience**: 8 - **Max Length**: 192 - **Gradient Accumulation Steps**: 4 - **Warmup Ratio**: 0.1 - **Weight Decay**: 0.01 - **Optimizer**: AdamW - **Scheduler**: cosine_with_warmup - **Random Seed**: 42 ## Performance - **Overall Accuracy**: 77.95% - **Overall Loss**: 0.0237 ### Language-Specific Performance - **English (EN)**: 86.87% - **German (DE)**: 86.87% - **Arabic (AR)**: 49.49% - **Spanish (ES)**: 89.90% - **Hindi (HI)**: 83.84% - **Swahili (SW)**: 70.71% ## Model Information - **Base Model**: bert-base-multilingual-cased - **Task**: Topic Classification - **Languages**: 6 languages (EN, DE, AR, ES, HI, SW)