flexthink
commited on
Commit
·
2678216
1
Parent(s):
5422153
Initial importZ
Browse files- attention_mlp.ckpt +3 -0
- classifier.ckpt +3 -0
- custom_interface.py +309 -0
- discrete_embedding_layer.ckpt +3 -0
- embedding_model.ckpt +3 -0
- hyperparams.yaml +83 -0
attention_mlp.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28c1d68f953ce692dbdbb0501e16cb005b232e45d9244ac2b2681931c3055e7b
|
| 3 |
+
size 4204478
|
classifier.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:896a20f78eb8cfde322b5ec4e5eb82413b75fd453bdc8763a197bd68b229358d
|
| 3 |
+
size 931371
|
custom_interface.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Mapping
|
| 2 |
+
import torch
|
| 3 |
+
import math
|
| 4 |
+
from speechbrain.inference.interfaces import Pretrained
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class AttentionMLP(torch.nn.Module):
|
| 8 |
+
def __init__(self, input_dim, hidden_dim):
|
| 9 |
+
super(AttentionMLP, self).__init__()
|
| 10 |
+
self.layers = torch.nn.Sequential(
|
| 11 |
+
torch.nn.Linear(input_dim, hidden_dim),
|
| 12 |
+
torch.nn.ReLU(),
|
| 13 |
+
torch.nn.Linear(hidden_dim, 1, bias=False),
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
x = self.layers(x)
|
| 18 |
+
att_w = torch.nn.functional.softmax(x, dim=2)
|
| 19 |
+
return att_w
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class Discrete_EmbeddingLayer(torch.nn.Module):
|
| 23 |
+
"""This class handles embedding layers for discrete tokens.
|
| 24 |
+
|
| 25 |
+
Arguments
|
| 26 |
+
---------
|
| 27 |
+
num_codebooks: int ,
|
| 28 |
+
number of codebooks of the tokenizer.
|
| 29 |
+
vocab_size : int,
|
| 30 |
+
size of the dictionary of embeddings
|
| 31 |
+
emb_dim: int ,
|
| 32 |
+
the size of each embedding vector
|
| 33 |
+
pad_index: int (default: 0),
|
| 34 |
+
If specified, the entries at padding_idx do not contribute to the gradient.
|
| 35 |
+
init: boolean (default: False):
|
| 36 |
+
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
|
| 37 |
+
freeze: boolean (default: False)
|
| 38 |
+
If True, the embedding is frozen. If False, the model will be trained
|
| 39 |
+
alongside with the rest of the pipeline.
|
| 40 |
+
chunk_size: int
|
| 41 |
+
The size of lengthwize chunks use when evaluating via
|
| 42 |
+
Gumbel softmax
|
| 43 |
+
|
| 44 |
+
Example
|
| 45 |
+
-------
|
| 46 |
+
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
|
| 47 |
+
>>> model_hub = "facebook/encodec_24khz"
|
| 48 |
+
>>> save_path = "savedir"
|
| 49 |
+
>>> model = Encodec(model_hub, save_path)
|
| 50 |
+
>>> audio = torch.randn(4, 1000)
|
| 51 |
+
>>> length = torch.tensor([1.0, .5, .75, 1.0])
|
| 52 |
+
>>> tokens, emb = model.encode(audio, length)
|
| 53 |
+
>>> print(tokens.shape)
|
| 54 |
+
torch.Size([4, 4, 2])
|
| 55 |
+
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
|
| 56 |
+
>>> in_emb = emb(tokens)
|
| 57 |
+
>>> print(in_emb.shape)
|
| 58 |
+
torch.Size([4, 4, 2, 1024])
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
num_codebooks,
|
| 64 |
+
vocab_size,
|
| 65 |
+
emb_dim,
|
| 66 |
+
pad_index=0,
|
| 67 |
+
init=False,
|
| 68 |
+
freeze=False,
|
| 69 |
+
available_layers=None,
|
| 70 |
+
layers=None,
|
| 71 |
+
chunk_size=100,
|
| 72 |
+
):
|
| 73 |
+
super(Discrete_EmbeddingLayer, self).__init__()
|
| 74 |
+
self.vocab_size = vocab_size
|
| 75 |
+
self.num_codebooks = num_codebooks
|
| 76 |
+
self.freeze = freeze
|
| 77 |
+
self.embedding = torch.nn.Embedding(
|
| 78 |
+
num_codebooks * vocab_size, emb_dim
|
| 79 |
+
).requires_grad_(not self.freeze)
|
| 80 |
+
self.init = init
|
| 81 |
+
self.layers = layers
|
| 82 |
+
self.available_layers = available_layers
|
| 83 |
+
self.register_buffer("offsets", self.build_offsets())
|
| 84 |
+
self.register_buffer("layer_embs", self.compute_layer_embs())
|
| 85 |
+
self.chunk_size = chunk_size
|
| 86 |
+
|
| 87 |
+
def init_embedding(self, weights):
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
self.embedding.weight = torch.nn.Parameter(weights)
|
| 90 |
+
|
| 91 |
+
def build_offsets(self):
|
| 92 |
+
offsets = torch.arange(
|
| 93 |
+
0,
|
| 94 |
+
self.num_codebooks * self.vocab_size,
|
| 95 |
+
self.vocab_size,
|
| 96 |
+
)
|
| 97 |
+
if self.layers:
|
| 98 |
+
selected_layers = set(self.layers)
|
| 99 |
+
indexes = [
|
| 100 |
+
idx for idx, layer in enumerate(self.available_layers)
|
| 101 |
+
if layer in selected_layers
|
| 102 |
+
]
|
| 103 |
+
offsets = offsets[indexes]
|
| 104 |
+
return offsets
|
| 105 |
+
|
| 106 |
+
def forward(self, in_tokens):
|
| 107 |
+
"""Computes the embedding for discrete tokens.
|
| 108 |
+
a sample.
|
| 109 |
+
|
| 110 |
+
Arguments
|
| 111 |
+
---------
|
| 112 |
+
in_tokens : torch.Tensor
|
| 113 |
+
A (Batch x Time x num_codebooks)
|
| 114 |
+
audio sample
|
| 115 |
+
Returns
|
| 116 |
+
-------
|
| 117 |
+
in_embs : torch.Tensor
|
| 118 |
+
"""
|
| 119 |
+
with torch.set_grad_enabled(not self.freeze):
|
| 120 |
+
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
|
| 121 |
+
in_tokens_offset = in_tokens + self.offsets.to(in_tokens.device)
|
| 122 |
+
# Forward Pass to embedding and
|
| 123 |
+
in_embs = self.embedding(in_tokens_offset.int())
|
| 124 |
+
return in_embs
|
| 125 |
+
|
| 126 |
+
def compute_layer_embs(self):
|
| 127 |
+
weight = self.embedding.weight
|
| 128 |
+
|
| 129 |
+
# Compute offsets
|
| 130 |
+
layer_idx_map = {
|
| 131 |
+
layer: idx
|
| 132 |
+
for idx, layer in enumerate(self.available_layers)
|
| 133 |
+
}
|
| 134 |
+
layer_idx = [
|
| 135 |
+
layer_idx_map[layer]
|
| 136 |
+
for layer in self.layers
|
| 137 |
+
]
|
| 138 |
+
|
| 139 |
+
offsets = [
|
| 140 |
+
idx * self.vocab_size
|
| 141 |
+
for idx in layer_idx
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
layer_embs = torch.stack([
|
| 145 |
+
weight[offset:offset + self.vocab_size]
|
| 146 |
+
for offset in offsets
|
| 147 |
+
])
|
| 148 |
+
|
| 149 |
+
# To (Batch x Length x Emb)
|
| 150 |
+
layer_embs = layer_embs.unsqueeze(0).unsqueeze(0)
|
| 151 |
+
return layer_embs
|
| 152 |
+
|
| 153 |
+
def encode_logits(self, logits, length=None):
|
| 154 |
+
"""Computes waveforms from a batch of discrete units
|
| 155 |
+
Arguments
|
| 156 |
+
---------
|
| 157 |
+
units: torch.tensor
|
| 158 |
+
Batch of discrete unit logits [batch, length, head, token]
|
| 159 |
+
or tokens [batch, length, head]
|
| 160 |
+
spk: torch.tensor
|
| 161 |
+
Batch of speaker embeddings [batch, spk_dim]
|
| 162 |
+
Returns
|
| 163 |
+
-------
|
| 164 |
+
waveforms: torch.tensor
|
| 165 |
+
Batch of mel-waveforms [batch, 1, time]
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
# Convert logits to one-hot representations
|
| 169 |
+
# without losing the gradient
|
| 170 |
+
units_gumbel = torch.nn.functional.gumbel_softmax(
|
| 171 |
+
logits,
|
| 172 |
+
hard=False,
|
| 173 |
+
dim=-1
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Straight-through trick
|
| 177 |
+
_, argmax_idx = logits.max(dim=-1, keepdim=True)
|
| 178 |
+
units_ref = torch.zeros_like(logits).scatter_(
|
| 179 |
+
dim=-1, index=argmax_idx, src=torch.ones_like(logits)
|
| 180 |
+
)
|
| 181 |
+
units_hard = units_ref - units_gumbel.detach() + units_gumbel
|
| 182 |
+
|
| 183 |
+
# Sum over embeddings for each layer
|
| 184 |
+
units_hard_chunked = units_hard.chunk(
|
| 185 |
+
math.ceil(units_hard.size(1) / self.chunk_size),
|
| 186 |
+
dim=1
|
| 187 |
+
)
|
| 188 |
+
emb = torch.cat(
|
| 189 |
+
[
|
| 190 |
+
(self.layer_embs * units_hard_chunk.unsqueeze(-1)).sum(-2)
|
| 191 |
+
for units_hard_chunk in units_hard_chunked
|
| 192 |
+
],
|
| 193 |
+
dim=1
|
| 194 |
+
)
|
| 195 |
+
return emb
|
| 196 |
+
|
| 197 |
+
def load_state_dict(self, state_dict, strict=True):
|
| 198 |
+
result = super().load_state_dict(state_dict, strict)
|
| 199 |
+
self.layer_embs = self.compute_layer_embs()
|
| 200 |
+
return result
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class DiscreteSpkEmb(Pretrained):
|
| 204 |
+
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
| 205 |
+
language-id, emotion recognition, keyword spotting, etc).
|
| 206 |
+
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
| 207 |
+
are defined in the yaml file. If you want to
|
| 208 |
+
convert the predicted index into a corresponding text label, please
|
| 209 |
+
provide the path of the label_encoder in a variable called 'lab_encoder_file'
|
| 210 |
+
within the yaml.
|
| 211 |
+
The class can be used either to run only the encoder (encode_batch()) to
|
| 212 |
+
extract embeddings or to run a classification step (classify_batch()).
|
| 213 |
+
```
|
| 214 |
+
Example
|
| 215 |
+
-------
|
| 216 |
+
>>> import torchaudio
|
| 217 |
+
>>> from speechbrain.pretrained import EncoderClassifier
|
| 218 |
+
>>> # Model is downloaded from the speechbrain HuggingFace repo
|
| 219 |
+
>>> tmpdir = getfixture("tmpdir")
|
| 220 |
+
>>> classifier = EncoderClassifier.from_hparams(
|
| 221 |
+
... source="speechbrain/spkrec-ecapa-voxceleb",
|
| 222 |
+
... savedir=tmpdir,
|
| 223 |
+
... )
|
| 224 |
+
>>> # Compute embeddings
|
| 225 |
+
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
|
| 226 |
+
>>> embeddings = classifier.encode_batch(signal)
|
| 227 |
+
>>> # Classification
|
| 228 |
+
>>> prediction = classifier .classify_batch(signal)
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
def __init__(self, *args, **kwargs):
|
| 232 |
+
super().__init__(*args, **kwargs)
|
| 233 |
+
|
| 234 |
+
def encode_batch(self, audio, length=None):
|
| 235 |
+
"""Encodes the input audio into a single vector embedding.
|
| 236 |
+
The waveforms should already be in the model's desired format.
|
| 237 |
+
Arguments
|
| 238 |
+
---------
|
| 239 |
+
audio : torch.tensor
|
| 240 |
+
Batch of tokenized audio [batch, time, heads]
|
| 241 |
+
length : torch.tensor
|
| 242 |
+
Lengths of the waveforms relative to the longest one in the
|
| 243 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 244 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 245 |
+
Used for ignoring padding.
|
| 246 |
+
|
| 247 |
+
Returns
|
| 248 |
+
-------
|
| 249 |
+
torch.tensor
|
| 250 |
+
The encoded batch
|
| 251 |
+
"""
|
| 252 |
+
# Manage single waveforms in input
|
| 253 |
+
embeddings = self.mods.discrete_embedding_layer(audio)
|
| 254 |
+
att_w = self.mods.attention_mlp(embeddings)
|
| 255 |
+
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
| 256 |
+
embeddings = self.mods.embedding_model(feats, length)
|
| 257 |
+
return embeddings.squeeze(1)
|
| 258 |
+
|
| 259 |
+
def encode_logits(self, logits, length=None):
|
| 260 |
+
"""Encodes the input audio logits into a single vector embedding.
|
| 261 |
+
|
| 262 |
+
Arguments
|
| 263 |
+
---------
|
| 264 |
+
audio : torch.tensor
|
| 265 |
+
Batch of tokenized audio [batch, time, heads]
|
| 266 |
+
length : torch.tensor
|
| 267 |
+
Lengths of the waveforms relative to the longest one in the
|
| 268 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 269 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 270 |
+
Used for ignoring padding.
|
| 271 |
+
|
| 272 |
+
Returns
|
| 273 |
+
-------
|
| 274 |
+
torch.tensor
|
| 275 |
+
The encoded batch
|
| 276 |
+
"""
|
| 277 |
+
embeddings = self.mods.discrete_embedding_layer.encode_logits(logits)
|
| 278 |
+
att_w = self.mods.attention_mlp(embeddings)
|
| 279 |
+
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
| 280 |
+
embeddings = self.mods.embedding_model(feats, length)
|
| 281 |
+
return embeddings.squeeze(1)
|
| 282 |
+
|
| 283 |
+
def forward(self, audio, length=None):
|
| 284 |
+
"""Encodes the input audio into a single vector embedding.
|
| 285 |
+
The waveforms should already be in the model's desired format.
|
| 286 |
+
Arguments
|
| 287 |
+
---------
|
| 288 |
+
audio : torch.tensor
|
| 289 |
+
Batch of tokenized audio [batch, time, heads]
|
| 290 |
+
or logits [batch, time, heads, tokens]
|
| 291 |
+
length : torch.tensor
|
| 292 |
+
Lengths of the waveforms relative to the longest one in the
|
| 293 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 294 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 295 |
+
Used for ignoring padding.
|
| 296 |
+
|
| 297 |
+
Returns
|
| 298 |
+
-------
|
| 299 |
+
torch.tensor
|
| 300 |
+
The encoded batch
|
| 301 |
+
"""
|
| 302 |
+
audio_dim = audio.dim()
|
| 303 |
+
if audio_dim == 3:
|
| 304 |
+
embeddings = self.encode_batch(audio, length)
|
| 305 |
+
elif audio_dim == 4:
|
| 306 |
+
embeddings = self.encode_logits(audio, length)
|
| 307 |
+
else:
|
| 308 |
+
raise ValueError("Unsupported audio shape {audio.shape}")
|
| 309 |
+
return embeddings
|
discrete_embedding_layer.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f0242e3dbca8efaeaeaa3f79fd92d1828da4cd3504c57072fbbc4b2100a32647
|
| 3 |
+
size 24577457
|
embedding_model.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2564eaaa33bd952b771c9c09f9b3dc555285cd4801663afacf3200eb5ccf786c
|
| 3 |
+
size 102646844
|
hyperparams.yaml
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ############################################################################
|
| 2 |
+
# Model: ECAPA big for Speaker verification
|
| 3 |
+
# ############################################################################
|
| 4 |
+
|
| 5 |
+
# Feature parameters
|
| 6 |
+
n_mels: 80
|
| 7 |
+
|
| 8 |
+
# Pretrain folder (HuggingFace)
|
| 9 |
+
pretrained_path: flexthink/discrete_hubert_spk_rec_ecapatdn
|
| 10 |
+
# Output parameters
|
| 11 |
+
save_folder: tmp
|
| 12 |
+
|
| 13 |
+
### Configuration for discrete SSL model
|
| 14 |
+
# ssl_model_type: hubert, wavlm, wav2vec2
|
| 15 |
+
# ssl_hub: facebook/hubert-large-ll60k, microsoft/wavlm-large, facebook/wav2vec2-large
|
| 16 |
+
ssl_model_type: hubert # hubert, wavml or wav2vec2
|
| 17 |
+
ssl_hub: facebook/hubert-large-ll60k
|
| 18 |
+
ssl_folder: !ref <save_folder>/ssl_checkpoint
|
| 19 |
+
kmeans_repo_id: speechbrain/SSL_Quantization
|
| 20 |
+
kmeans_cache_dir: !ref <save_folder>/kmeans_checkpoint
|
| 21 |
+
kmeans_dataset: LibriSpeech-100-360-500
|
| 22 |
+
freeze_ssl: True
|
| 23 |
+
freeze_feature_extractor: True
|
| 24 |
+
num_clusters: 1000
|
| 25 |
+
|
| 26 |
+
### Config for Tokenizer
|
| 27 |
+
# Layer number should be among the supported layers for discrete SSL models(kmenas model should be available for that layer)
|
| 28 |
+
# ssl_layer_num: [3, 7, 12, 23]
|
| 29 |
+
# deduplicate: [False, False, False, False]
|
| 30 |
+
# bpe_tokenizer_path: [null , null, null, null]
|
| 31 |
+
ssl_layer_num: [1, 3, 7, 12, 18, 23]
|
| 32 |
+
ssl_layer_num_selected: [1, 3, 7, 12, 18, 23]
|
| 33 |
+
num_codebooks: 6
|
| 34 |
+
deduplicate: [False, False, False, False, False, False]
|
| 35 |
+
bpe_tokenizer_path: [null, null, null, null, null, null]
|
| 36 |
+
sample_rate: 16000
|
| 37 |
+
|
| 38 |
+
# Feature parameters
|
| 39 |
+
encoder_dim: 1024
|
| 40 |
+
# Modules
|
| 41 |
+
tokenizer_config:
|
| 42 |
+
SSL_layers: !ref <ssl_layer_num>
|
| 43 |
+
deduplicates: !ref <deduplicate>
|
| 44 |
+
bpe_tokenizers: !ref <bpe_tokenizer_path>
|
| 45 |
+
|
| 46 |
+
discrete_embedding_layer: !new:custom_interface.Discrete_EmbeddingLayer
|
| 47 |
+
num_codebooks: !ref <num_codebooks>
|
| 48 |
+
vocab_size: !ref <num_clusters>
|
| 49 |
+
emb_dim: !ref <encoder_dim>
|
| 50 |
+
available_layers: !ref <ssl_layer_num>
|
| 51 |
+
layers: !ref <ssl_layer_num_selected>
|
| 52 |
+
|
| 53 |
+
attention_mlp: !new:custom_interface.AttentionMLP
|
| 54 |
+
input_dim: !ref <encoder_dim>
|
| 55 |
+
hidden_dim: !ref <encoder_dim>
|
| 56 |
+
|
| 57 |
+
embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
| 58 |
+
input_size: !ref <encoder_dim>
|
| 59 |
+
channels: [1024, 1024, 1024, 1024, 3072]
|
| 60 |
+
kernel_sizes: [5, 3, 3, 3, 1]
|
| 61 |
+
dilations: [1, 2, 3, 4, 1]
|
| 62 |
+
groups: [1, 1, 1, 1, 1]
|
| 63 |
+
attention_channels: 128
|
| 64 |
+
lin_neurons: 192
|
| 65 |
+
|
| 66 |
+
modules:
|
| 67 |
+
embedding_model: !ref <embedding_model>
|
| 68 |
+
attention_mlp: !ref <attention_mlp>
|
| 69 |
+
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 73 |
+
loadables:
|
| 74 |
+
embedding_model: !ref <embedding_model>
|
| 75 |
+
attention_mlp: !ref <attention_mlp>
|
| 76 |
+
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
| 77 |
+
|
| 78 |
+
paths:
|
| 79 |
+
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
|
| 80 |
+
attention_mlp: !ref <pretrained_path>/attention_mlp.ckpt
|
| 81 |
+
discrete_embedding_layer: !ref <pretrained_path>/discrete_embedding_layer.ckpt
|
| 82 |
+
|
| 83 |
+
|