--- license: apache-2.0 tags: - generated_from_trainer datasets: - dataset metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-finetuned-with-spanish-tweets-clf results: - task: name: Text Classification type: text-classification dataset: name: dataset type: dataset config: 60-20-20 split: dev args: 60-20-20 metrics: - name: Accuracy type: accuracy value: 0.5701451278507257 - name: F1 type: f1 value: 0.5651604812495131 - name: Precision type: precision value: 0.5665667380442541 - name: Recall type: recall value: 0.5641613027059359 --- # distilbert-base-uncased-finetuned-with-spanish-tweets-clf This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.0580 - Accuracy: 0.5701 - F1: 0.5652 - Precision: 0.5666 - Recall: 0.5642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0643 | 1.0 | 543 | 1.0457 | 0.4423 | 0.2761 | 0.5104 | 0.3712 | | 0.9754 | 2.0 | 1086 | 0.9700 | 0.5155 | 0.4574 | 0.5190 | 0.4712 | | 0.8145 | 3.0 | 1629 | 0.9691 | 0.5556 | 0.5544 | 0.5616 | 0.5506 | | 0.6318 | 4.0 | 2172 | 1.0580 | 0.5701 | 0.5652 | 0.5666 | 0.5642 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2