File size: 34,706 Bytes
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c12461a
 
 
53c6043
 
 
 
 
 
 
8869ef6
c12461a
 
 
 
8869ef6
c12461a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8869ef6
c12461a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8869ef6
c12461a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8869ef6
c12461a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8869ef6
c12461a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c12461a
8869ef6
 
 
 
 
c12461a
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
403e4e4
 
c12461a
8869ef6
 
 
 
156d655
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bf7a6
 
 
 
 
847f3bc
 
 
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156d655
 
 
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5ae3f
 
 
8869ef6
7c5ae3f
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
57b5fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310a2f
57b5fd0
 
 
 
 
 
 
1310a2f
 
 
 
 
 
 
57b5fd0
1310a2f
57b5fd0
 
1310a2f
57b5fd0
1310a2f
 
 
8ee5602
 
 
 
57b5fd0
1310a2f
57b5fd0
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227c1b1
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb74285
2c69219
 
 
fb74285
2c69219
fb74285
2c69219
fb74285
2c69219
fb74285
2c69219
fb74285
2c69219
7aedee9
2c69219
7aedee9
 
2c69219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8a1b3
8ee5602
c8e44c2
7aedee9
8869ef6
 
 
 
 
 
27358a3
68c3463
27358a3
73fe99b
2bf549f
c12461a
f9bf7a6
c12461a
8869ef6
 
 
 
 
 
 
 
2c69219
8869ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c69219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e44c2
 
 
 
 
 
 
 
 
 
 
 
8869ef6
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
---
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MatryoshkaLoss
- loss:CosineSimilarityLoss
- chemistry
- biology
- drug-discovery
- herbal
- coconutdb
- chembl34
- selfies
- drugs
- molecules
- compounds
widget:
- source_sentence: >-
    [N]  [C]  [=N]  [C]  [=N]  [C]  [=C]  [Ring1]  [=Branch1]  [S]  [C]  [=C] 
    [C]  [Branch1]  [=Branch2]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [Ring1] 
    [=Branch1]  [=C]  [C]  [=C]  [Ring1]  [N]  [Ring1]  [#C]
  sentences:
  - >-
    [C]  [C]  [C]  [C]  [C@H1]  [Branch2]  [#Branch2]  [Branch2]  [N]  [C] 
    [=Branch1]  [C]  [=O]  [C@@H1]  [C]  [C]  [C]  [C]  [N]  [C]  [=Branch1] 
    [C]  [=O]  [C]  [C]  [C@H1]  [Branch2]  [=Branch1]  [S]  [N]  [C] 
    [=Branch1]  [C]  [=O]  [C@H1]  [Branch1]  [#Branch2]  [C]  [C]  [C]  [N] 
    [=C]  [Branch1]  [C]  [N]  [N]  [N]  [C]  [=Branch1]  [C]  [=O]  [C@H1] 
    [Branch1]  [#Branch1]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [N]  [C] 
    [=Branch1]  [C]  [=O]  [C@H1]  [Branch1]  [#Branch1]  [C]  [C]  [Branch1] 
    [C]  [C]  [C]  [N]  [C]  [=Branch1]  [C]  [=O]  [C@H1]  [Branch1] 
    [=Branch2]  [C]  [C]  [=C]  [NH1]  [C]  [=N]  [Ring1]  [Branch1]  [N]  [C] 
    [=Branch1]  [C]  [=O]  [C@H1]  [Branch1]  [C]  [N]  [C]  [C]  [=C]  [C] 
    [=C]  [C]  [=C]  [Ring1]  [=Branch1]  [C]  [=Branch1]  [C]  [=O]  [N] 
    [C@@H1]  [Branch1]  [=Branch1]  [C]  [Branch1]  [C]  [C]  [C]  [C] 
    [=Branch1]  [C]  [=O]  [N]  [C@H1]  [Branch1]  [#Branch1]  [C]  [C] 
    [Branch1]  [C]  [C]  [C]  [C]  [=Branch1]  [C]  [=O]  [N]  [Ring2] 
    [=Branch1]  [=C]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [C] 
    [C]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [#Branch2]  [C] 
    [C]  [C]  [N]  [=C]  [Branch1]  [C]  [N]  [N]  [C]  [=Branch1]  [C]  [=O] 
    [N]  [C@@H1]  [Branch1]  [C]  [C]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1] 
    [Branch1]  [Branch2]  [C]  [C]  [C]  [=Branch1]  [C]  [=O]  [O]  [C] 
    [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [Branch2]  [C]  [C]  [C] 
    [Branch1]  [C]  [N]  [=O]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1] 
    [Branch1]  [#Branch1]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [=Branch1] 
    [C]  [=O]  [N]  [C@@H1]  [Branch1]  [C]  [C]  [C]  [=Branch1]  [C]  [=O] 
    [N]  [C@@H1]  [Branch1]  [Branch2]  [C]  [C]  [C]  [Branch1]  [C]  [N] 
    [=O]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [Branch2]  [C] 
    [C]  [C]  [Branch1]  [C]  [N]  [=O]  [C]  [=Branch1]  [C]  [=O]  [N] 
    [C@@H1]  [Branch1]  [C]  [C]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1] 
    [Branch1]  [=Branch2]  [C]  [C]  [=C]  [NH1]  [C]  [=N]  [Ring1]  [Branch1] 
    [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [Ring1]  [C]  [O]  [C] 
    [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [#Branch1]  [C]  [C] 
    [Branch1]  [C]  [N]  [=O]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1] 
    [Branch1]  [#Branch2]  [C]  [C]  [C]  [N]  [=C]  [Branch1]  [C]  [N]  [N] 
    [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1]  [=Branch1]  [C]  [C] 
    [C]  [C]  [N]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@@H1]  [Branch1] 
    [#Branch1]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [=Branch1]  [C]  [=O] 
    [N]  [C@@H1]  [Branch1]  [Branch1]  [C]  [C]  [C]  [C]  [C]  [=Branch1] 
    [C]  [=O]  [N]  [C@@H1]  [Branch1]  [Branch2]  [C]  [C]  [C]  [=Branch1] 
    [C]  [=O]  [O]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@H1]  [Branch2]  [Ring1] 
    [Ring2]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@H1]  [Branch1]  [=Branch1] 
    [C]  [Branch1]  [C]  [N]  [=O]  [C@@H1]  [Branch1]  [C]  [C]  [C]  [C] 
    [C@@H1]  [Branch1]  [C]  [C]  [C]  [C]
  - >-
    [C]  [C]  [=Branch1]  [C]  [=O]  [N]  [C@H1]  [C@H1]  [Branch2]  [Ring2] 
    [#Branch2]  [O]  [C@H1]  [C@@H1]  [Branch1]  [C]  [O]  [C@@H1]  [Branch1] 
    [Ring1]  [C]  [O]  [O]  [C@@H1]  [Branch2]  [Ring1]  [Branch1]  [O]  [C@H1] 
    [C@H1]  [Branch1]  [C]  [O]  [C@@H1]  [Branch1]  [C]  [O]  [C@H1] 
    [Branch1]  [C]  [O]  [O]  [C@@H1]  [Ring1]  [=Branch2]  [C]  [O]  [C@@H1] 
    [Ring2]  [Ring1]  [Branch1]  [O]  [O]  [C@H1]  [Branch1]  [Ring1]  [C]  [O] 
    [C@@H1]  [Branch1]  [C]  [O]  [C@@H1]  [Ring2]  [Ring1]  [S]  [O]  [C@@H1] 
    [O]  [C@H1]  [Branch1]  [Ring1]  [C]  [O]  [C@H1]  [Branch1]  [C]  [O] 
    [C@H1]  [Branch1]  [C]  [O]  [C@H1]  [Ring1]  [#Branch2]  [O]
  - >-
    [C]  [C]  [=C]  [C]  [=C]  [C]  [Branch2]  [Ring1]  [Ring1]  [N]  [C] 
    [=Branch1]  [C]  [=O]  [C]  [O]  [C]  [=C]  [C]  [=C]  [C]  [Branch1]  [C] 
    [C]  [=C]  [Ring1]  [#Branch1]  [=C]  [Ring2]  [Ring1]  [C]
- source_sentence: >-
    [O]  [=C]  [Branch1]  [C]  [O]  [C]  [O]  [C]  [Branch2]  [O]  [=C]  [O] 
    [C]  [C]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [Branch2]  [#Branch2] 
    [#Branch2]  [C]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [Ring1]  [Branch2] 
    [C]  [C]  [=C]  [C]  [C]  [C]  [Branch1]  [C]  [C]  [Branch1]  [C]  [C] 
    [C]  [C]  [C]  [Ring1]  [Branch2]  [Branch2]  [#Branch1]  [S]  [C] 
    [=Branch1]  [C]  [=O]  [O]  [C]  [O]  [C]  [C]  [Branch1]  [C]  [O]  [C] 
    [Branch1]  [C]  [O]  [C]  [Ring1]  [Branch2]  [O]  [C]  [O]  [C]  [Branch1] 
    [C]  [C]  [C]  [Branch2]  [Ring1]  [S]  [O]  [C]  [O]  [C]  [C]  [Branch1] 
    [C]  [O]  [C]  [Branch1]  [P]  [O]  [C]  [O]  [C]  [C]  [Branch1]  [C]  [O] 
    [Branch1]  [Ring1]  [C]  [O]  [C]  [Ring1]  [Branch2]  [O]  [C]  [Ring1] 
    [P]  [O]  [C]  [Branch2]  [Ring1]  [#Branch2]  [O]  [C]  [O]  [C] 
    [Branch1]  [Branch2]  [C]  [O]  [C]  [=Branch1]  [C]  [=O]  [C]  [C] 
    [Branch1]  [C]  [O]  [C]  [Branch1]  [C]  [O]  [C]  [Ring1]  [=N]  [O]  [C] 
    [Ring2]  [Ring2]  [=Branch2]  [O]  [C]  [Branch1]  [C]  [O]  [C]  [C] 
    [Ring2]  [=Branch1]  [Branch2]  [Ring2]  [=Branch1]  [Ring1]  [C]  [C] 
    [Ring2]  [#Branch1]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [Branch1]  [C] 
    [O]  [C]  [Branch1]  [C]  [O]  [C]  [Ring2]  [#Branch1]  [=N]  [O]
  sentences:
  - >-
    [C]  [C]  [=C]  [C]  [Branch1]  [C]  [C]  [=C]  [Branch1]  [S]  [N]  [C] 
    [=C]  [C]  [Branch1]  [C]  [F]  [=C]  [C]  [Branch1]  [C]  [F]  [=C] 
    [Ring1]  [Branch2]  [C]  [Branch1]  [C]  [C]  [=C]  [Ring1]  [P]
  - >-
    [N]  [C]  [=N]  [C]  [=N]  [C]  [=C]  [Ring1]  [=Branch1]  [N]  [=C]  [N] 
    [Ring1]  [Branch1]  [C@@H1]  [O]  [C@H1]  [Branch2]  [=Branch2]  [O]  [C] 
    [O]  [P]  [=Branch1]  [C]  [=O]  [Branch1]  [C]  [O]  [O]  [C@H1]  [C@@H1] 
    [Branch1]  [C]  [O]  [C@H1]  [Branch1]  [S]  [N]  [C]  [=C]  [Branch1]  [C] 
    [I]  [C]  [=Branch1]  [C]  [=O]  [NH1]  [C]  [Ring1]  [Branch2]  [=O]  [O] 
    [C@@H1]  [Ring1]  [#C]  [C]  [O]  [P]  [=Branch1]  [C]  [=O]  [Branch1] 
    [C]  [O]  [O]  [C@H1]  [C@@H1]  [Branch1]  [C]  [O]  [C@H1]  [Branch1]  [S] 
    [N]  [C]  [=C]  [Branch1]  [C]  [F]  [C]  [=Branch1]  [C]  [=O]  [NH1]  [C] 
    [Ring1]  [Branch2]  [=O]  [O]  [C@@H1]  [Ring1]  [#C]  [C]  [O]  [P] 
    [=Branch1]  [C]  [=O]  [Branch1]  [C]  [O]  [O]  [C@H1]  [C@@H1]  [Branch1] 
    [C]  [O]  [C@H1]  [Branch1]  [P]  [N]  [C]  [=N]  [C]  [=C]  [Branch1]  [C] 
    [N]  [N]  [=C]  [N]  [=C]  [Ring1]  [#Branch1]  [Ring1]  [#Branch2]  [O] 
    [C@@H1]  [Ring1]  [S]  [C]  [O]  [P]  [=Branch1]  [C]  [=O]  [Branch1]  [C] 
    [O]  [O]  [C@@H1]  [Branch1]  [C]  [O]  [C@H1]  [Ring2]  [=Branch1]  [N] 
    [O]
  - >-
    [C]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [C]  [C]  [C]  [C]  [#C] 
    [/C]  [=C]  [\O]  [C]  [C@@H1]  [Branch1]  [C]  [O]  [C]  [O]
- source_sentence: >-
    [O]  [=C]  [N]  [=C]  [Branch1]  [C]  [NH1-1]  [N]  [=C]  [C]  [Ring1] 
    [#Branch1]  [=N]  [C]  [NH1+1]  [Ring1]  [Branch1]  [C]  [=N]  [C]  [=C] 
    [N]  [Ring1]  [Branch1]  [C]  [C]  [=C]  [C]  [=C]  [Branch2]  [Ring2] 
    [=Branch2]  [O]  [C]  [=C]  [Ring1]  [=Branch1]  [C]  [Branch1]  [Ring1] 
    [O]  [C]  [=C]  [C]  [Branch2]  [Ring1]  [Ring2]  [O]  [C]  [Branch1] 
    [Ring2]  [C]  [Ring1]  [Branch1]  [C]  [Branch1]  [C]  [O]  [Branch1]  [C] 
    [C]  [C]  [C]  [C]  [C]  [O]  [=C]  [Ring2]  [Ring1]  [Ring1]  [C]  [O] 
    [C]  [=Branch1]  [C]  [=O]  [O]  [C]  [C]
  sentences:
  - >-
    [O]  [=C]  [Branch2]  [#Branch1]  [=Branch1]  [O]  [C]  [Branch1]  [C]  [C] 
    [C]  [C]  [=C]  [C]  [S]  [S]  [C]  [C]  [N]  [Branch2]  [Branch1]  [=N] 
    [C]  [=Branch1]  [C]  [=O]  [C]  [C]  [=C]  [N]  [=C]  [Branch1]  [C]  [N] 
    [C]  [=C]  [Ring1]  [#Branch1]  [C]  [Ring2]  [Ring1]  [C]  [C]  [Ring2] 
    [Ring1]  [#Branch1]  [O]  [C]  [=C]  [C]  [O]  [C]  [=Branch1]  [C]  [=O] 
    [C]  [=Branch1]  [N]  [=C]  [C]  [=Ring1]  [#Branch1]  [C]  [=C]  [Ring1] 
    [O]  [C]  [Ring1]  [=C]  [C]  [Branch1]  [Ring2]  [C]  [C]  [O]  [C]  [C] 
    [C]  [C]  [C]  [Ring1]  [=Branch2]  [C]  [C]  [Ring2]  [Ring2]  [=Branch1] 
    [C]  [N]  [C]  [C]  [=Branch1]  [Ring1]  [=C]  [C]  [C]
  - >-
    [N]  [C]  [=C]  [C]  [=C]  [Branch1]  [C]  [Cl]  [C]  [=C]  [Ring1] 
    [#Branch1]  [C]  [=O]
  - >-
    [O]  [=P]  [Branch1]  [C]  [O]  [Branch1]  [C]  [O]  [O]  [P]  [=Branch1] 
    [C]  [=O]  [Branch1]  [C]  [O]  [O]  [C]  [C]  [=C]  [C]  [C]  [C]  [C] 
    [Ring1]  [=Branch1]
- source_sentence: >-
    [C]  [C]  [O]  [/N]  [=C]  [/C]  [N]  [Branch2]  [Ring2]  [C]  [C]  [=C] 
    [Branch1]  [C]  [F]  [C]  [=C]  [C]  [=Branch1]  [C]  [=O]  [C]  [Branch1] 
    [=Branch1]  [C]  [=Branch1]  [C]  [=O]  [O]  [=C]  [N]  [C]  [Ring1] 
    [#Branch2]  [=C]  [Ring1]  [#C]  [O]  [C]  [C@@H1]  [Ring1]  [=Branch1] 
    [C]  [C]  [C]  [Ring2]  [Ring1]  [Branch2]  [Branch1]  [C]  [C]  [C]  [N] 
    [C]  [C]  [C]  [Ring1]  [Ring1]
  sentences:
  - >-
    [O]  [=C]  [C@H1]  [Branch1]  [C]  [O]  [C@@H1]  [Branch1]  [C]  [O] 
    [C@H1]  [Branch1]  [C]  [O]  [C@H1]  [Branch1]  [C]  [S]  [C]  [O]
  - >-
    [C]  [C]  [O]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [Ring1]  [=Branch1]  [C] 
    [N]  [C]  [C]  [N]  [C]  [=Branch1]  [C]  [=O]  [C]  [Ring1]  [#Branch1] 
    [C]  [C]  [=Branch1]  [C]  [=O]  [N]  [C]  [C]  [C]  [C]  [C]  [C]  [Ring1] 
    [=Branch1]
  - >-
    [C]  [C]  [=N]  [C]  [=C]  [N]  [Ring1]  [Branch1]  [C]  [C]  [N]  [C]  [C] 
    [O]  [C]  [C]  [Ring1]  [=Branch1]
- source_sentence: >-
    [C]  [C]  [=C]  [C]  [=C]  [Branch2]  [Ring2]  [S]  [C]  [C]  [N]  [C] 
    [=Branch1]  [C]  [=O]  [C]  [=C]  [N]  [Branch1]  [C]  [C]  [C]  [=C]  [C] 
    [=C]  [Branch2]  [Ring1]  [Ring1]  [S]  [=Branch1]  [C]  [=O]  [=Branch1] 
    [C]  [=O]  [N]  [C]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [Ring1] 
    [#Branch1]  [C]  [=C]  [Ring1]  [S]  [C]  [Ring2]  [Ring1]  [Branch1]  [=O] 
    [C]  [=C]  [Ring2]  [Ring1]  [P]
  sentences:
  - >-
    [C]  [N]  [C]  [=N]  [C]  [Branch2]  [Branch1]  [C]  [S]  [=Branch1]  [C] 
    [=O]  [=Branch1]  [C]  [=O]  [N]  [Branch1]  [#Branch2]  [C]  [C]  [C]  [C] 
    [N]  [C]  [C]  [Ring1]  [=Branch1]  [C]  [C]  [C]  [=C]  [C]  [Branch1] 
    [Ring1]  [C]  [#N]  [=C]  [C]  [=C]  [Ring1]  [Branch2]  [N]  [Branch1] 
    [#Branch2]  [C]  [C]  [=C]  [N]  [=C]  [N]  [Ring1]  [Branch1]  [C]  [C] 
    [Ring2]  [Ring1]  [Ring1]  [=C]  [Ring2]  [Ring2]  [Ring1]
  - >-
    [O]  [=C]  [Branch1]  [C]  [O]  [C]  [C]  [C]  [C]  [=C]  [C]  [=C]  [C] 
    [=C]  [C]  [=C]  [C]  [=C]
  - >-
    [C]  [C]  [C]  [C]  [C@@H1]  [C]  [N]  [Branch2]  [Ring2]  [#C]  [C@H1] 
    [Branch1]  [S]  [C]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [C] 
    [Ring1]  [=Branch1]  [=C]  [Ring1]  [#Branch2]  [C]  [N]  [C]  [C]  [C] 
    [C]  [Ring1]  [Branch1]  [C]  [N]  [C]  [Branch1]  [C]  [N]  [=N]  [C] 
    [C@@H1]  [Ring1]  [=Branch1]  [C]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [Ring1] 
    [=Branch1]  [C]  [=Branch1]  [C]  [=N]  [N]  [Ring2]  [Ring2]  [=Branch1] 
    [C]  [C]  [Branch1]  [C]  [C]  [C]  [=C]  [C]  [=C]  [Branch1]  [#Branch1] 
    [C]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [=C]  [Ring1]  [#Branch2]
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: combined test
      type: combined-test
    metrics:
    - type: pearson_cosine
      value: 0.960544
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.951972
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.878769
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.85873
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.881126
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.86117
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.841371
      name: Pearson Dot
    - type: spearman_dot
      value: 0.842071
      name: Spearman Dot
    - type: pearson_max
      value: 0.960544
      name: Pearson Max
    - type: spearman_max
      value: 0.951972
      name: Spearman Max
base_model: gbyuvd/chemselfies-base-bertmlm
base_model_relation: finetune
license: cc-by-nc-sa-4.0
---

# ChemFIE-BED (ChemSELFIES Embedding)

ChemFIE-BED is a [sentence-transformers](https://www.SBERT.net) based on [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm) fine-tuned on around (for now) 2 million pairs of valid molecules' SELFIES (Krenn et al. 2020) taken from COCONUTDB (Sorokina et al. 2021) and ChemBL34 [(Zdrazil et al. 2023)](https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/). It maps compounds' *Self-Referencing Embedded Strings* (SELFIES) into a 320-dimensional dense vector space, potentially can be used for chemical similarity, similarity search, classification, clustering, and more.

Although there is more data for the model to train on, the test metrics on unseen data of combined natural products and bioactives are already sufficient for now.

This model is the full implementation of [Tom Aarsen](https://huggingface.co/tomaarsen)'s [suggestions](https://huggingface.co/gbyuvd/ChemEmbed-v01/discussions/1) on previous [prototype model](https://huggingface.co/gbyuvd/ChemEmbed-v01), now using my own pre-trained BERT and Matryoshka embeddings. For the latter, the model uses 320, 160, and 80 dimension that you can truncate depending on your needs.

For more informations:
- On SELFIES:
  - [blogpost](https://aspuru.substack.com/p/molecular-graph-representations-and) or check out [their github.](https://github.com/aspuru-guzik-group/selfies)
- On Sentence Transformer:
  - [blogpost](https://huggingface.co/blog/train-sentence-transformers)
- On Matryoshka embedding model:
  - [blogpost](https://huggingface.co/blog/matryoshka)



![image](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/pTz0bM_OcENa2qalRF2V_.png)



[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/O4O710GFBZ)

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm) <!-- at revision 082d953770b1f7a102912c200877f99b0fb947f0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 320 tokens
- **Similarity Function:** Cosine Similarity
- **Pooling:** Mean pooling
- **Training Dataset:** SELFIES pairs generated from COCONUTDB and ChemBL34
- **Language:** SELFIES
- **License:** CC-BY-NC-SA 4.0

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 320, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
)
```

## Usage

### [Demo for Fast Molecular Similarity Search on SuperNatural3 dataset](https://github.com/gbyuvd/ChemFIE-BED-faiss-demo)
[See this JupyterNotebook demo](https://github.com/gbyuvd/ChemFIE-BED-faiss-demo) for an example of using the above model to perform fast searches for structurally similar compounds within a pre-embedded SELFIES-converted SuperNatural3 dataset (Gallo et al. 2023) (~1 million molecules) using Meta's FAISS. 

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Specify preffered dimensions
# 320, 160, or 80
dimensions = 320

# Download the model from the 🤗 Hub
model = SentenceTransformer("gbyuvd/chembed-chemselfies-bed", truncate_dim=dimensions)

# Run inference
sentences = [
    '[C]  [C]  [=C]  [C]  [=C]  [Branch2]  [Ring2]  [S]  [C]  [C]  [N]  [C]  [=Branch1]  [C]  [=O]  [C]  [=C]  [N]  [Branch1]  [C]  [C]  [C]  [=C]  [C]  [=C]  [Branch2]  [Ring1]  [Ring1]  [S]  [=Branch1]  [C]  [=O]  [=Branch1]  [C]  [=O]  [N]  [C]  [C]  [C]  [Branch1]  [C]  [C]  [C]  [C]  [Ring1]  [#Branch1]  [C]  [=C]  [Ring1]  [S]  [C]  [Ring2]  [Ring1]  [Branch1]  [=O]  [C]  [=C]  [Ring2]  [Ring1]  [P]',
    '[O]  [=C]  [Branch1]  [C]  [O]  [C]  [C]  [C]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [C]  [=C]  [C]  [=C]',
    '[C]  [N]  [C]  [=N]  [C]  [Branch2]  [Branch1]  [C]  [S]  [=Branch1]  [C]  [=O]  [=Branch1]  [C]  [=O]  [N]  [Branch1]  [#Branch2]  [C]  [C]  [C]  [C]  [N]  [C]  [C]  [Ring1]  [=Branch1]  [C]  [C]  [C]  [=C]  [C]  [Branch1]  [Ring1]  [C]  [#N]  [=C]  [C]  [=C]  [Ring1]  [Branch2]  [N]  [Branch1]  [#Branch2]  [C]  [C]  [=C]  [N]  [=C]  [N]  [Ring1]  [Branch1]  [C]  [C]  [Ring2]  [Ring1]  [Ring1]  [=C]  [Ring2]  [Ring2]  [Ring1]',
]

"""
0: CHEMBL1885710
1: CID78383937
2: CHEMBL234161
"""

embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 320]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

## Dataset

| Dataset           | Reference                                                                            | Total Number of Pairs |
| :---------------- | :----------------------------------------------------------------------------------- | :-------------------- |
| COCONUTDB         | [(Sorokina et al. 2021)](https://coconut.naturalproducts.net/)                       | 1,183,186             |
| ChemBL34 (Part I) | [(Zdrazil et al. 2023)](https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/) | 1,064,858             |

### Data Preparation and Labeling

The dataset was prepared using various methods to create informative molecule pairs and labels for training a SELFIES-based sentence transformer. 
The process involved the following steps:

1. **Data Collection**: Raw data was gathered from COCONUTDB and ChemBL34.

2. **Data Preprocessing**:
   - Internal duplicates were removed.
   - Molecules were converted to SELFIES representation.
   - Molecules were filtered to ensure token length ≤ 510 (512 - 2 special tokens)
   - SELFIES were converted back to SMILES.

3. **Data Merging**: 
   - The processed datasets were merged into a combined dataset.
   - Duplicates were removed again.

4. **Tokenization and Encoding**:
   - A custom tokenizer was trained on the SELFIES representations.
   - SELFIES were encoded into numerical vectors.

5. **Complexity Score Calculation**:
   - A ratio was calculated for each molecule: sum of encoded IDs / length of SELFIES.
   - This ratio serves as a simple complexity score (similar to what was done in the base model)

6. **Binning**:
   - The complexity scores were log-transformed to reduce skewness.
   - Sturges' formula was used to determine the optimal number of bins.
   - Molecules were assigned to bins based on their log-transformed complexity scores.

7. **Pair Generation**:
   - A target size for each bin was calculated based on the average bin size.
   - For in-strata pairs:
     - Molecules from the same bin were paired.
     - Bins larger than the target size were undersampled.
     - Bins smaller than the target size were oversampled.
   - For inter-strata pairs:
     - Pairs were created between bins with an absolute difference > 3.
   - The pairing process aimed to balance the distribution across complexity levels.
   - Empty subsets were handled to ensure robust processing.

8. **Similarity Labeling**:
   - MACCS fingerprints were generated for each molecule using RDKit.
   - Cosine similarity between the MACCS fingerprints was calculated using CuPy for GPU acceleration.
   - Error handling was implemented for cases where molecules couldn't be processed.
   - The labels were resampled to ensure a balanced range of examples ([0,1])
   - The similarity scores were rounded to two decimal places for training.
9. **Splitting**:
   - The dataset was split into 80% for training, 10% for validation, and 10% for testing.
   - For the Natural Products set (NP), the test set is labeled "NP-iso-base" because the SMILES strings were not canonicalized (isomeric forms were retained).
   - The test set from ChemBL34 was then combined with the NP test set, and this combined set is referred to as "combined."

This methodology aims to provide a diverse set of molecule pairs with labels indicating structural similarity. The combination of complexity binning, balanced inter- and intra-strata sampling, and MACCS fingerprint similarity labeling is intended to capture a range of molecular complexities while providing chemically relevant labels for model training. 

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `combined-test`
* Number of test pairs: 898,980
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9605     |
| **spearman_cosine** | **0.9520** |
| pearson_manhattan   | 0.8788     |
| spearman_manhattan  | 0.8587     |
| pearson_euclidean   | 0.8802     |
| spearman_euclidean  | 0.8612     |
| pearson_dot         | 0.8414     |
| spearman_dot        | 0.8421     |
| pearson_max         | 0.9605     |
| spearman_max        | 0.9520     |



### Recommendations

To fully utilize the model capabitilities on a large dataset for similarity search, I'd recommend using Meta's [FAISS](https://github.com/facebookresearch/faiss) for rapid results or any of your preferred document retrieval framework.


## Training Details

### Training Hyperparameters
- `optimizer` : AdamW
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 32
- `weight_decay`: 0.01
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `dataloader_num_workers`: 8
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CosineSimilarityLoss",
      "matryoshka_dims": [
          320,
          160,
          80
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```


### Training Logs

#### Natural Products
| Epoch  | Step  | Training Loss | loss   | NPiso-base-test_spearman_cosine |
|:------:|:-----:|:-------------:|:------:|:-------------------------------:|
| 0.2771 | 4099  | 0.0243        | -      | -                               |
| 0.5543 | 8198  | 0.0099        | -      | -                               |
| 0.8314 | 12297 | 0.0083        | -      | -                               |
| 1.0    | 14790 | -             | 0.0074 | 0.9548                          |


#### Combined I
| Epoch  | Step  | Training Loss | loss   | All-base-test_spearman_cosine |
|:------:|:-----:|:-------------:|:------:|:-----------------------------:|
| 0.2737 | 4099  | 0.0111        | -      | -                             |
| 0.5474 | 8198  | 0.0086        | -      | -                             |
| 0.8212 | 12297 | 0.0077        | -      | -                             |
| 1.0    | 14975 | -             | 0.0072 | 0.9516                        |

## Testing The Generated Embedding to Find Similar Molecules
### Using Cosine Similarity
#### Single Input
Using Varenicline (CID5310966), a nAChR α4β2 partial agonist, as the query molecule, I conducted a similarity search to find structurally related compounds. The search utilized Varenicline's canonical SMILES representation (though isomeric SMILES could also be used) as the input.

I employed FAISS (Facebook AI Similarity Search) to identify the top 10 most similar molecules from a set of 1 million compounds in the Supernatural3 database [(Gallo et al. 2023)](https://doi.org/10.1093%2Fnar%2Fgkac1008). The search was based on cosine similarities of pre-embedded SELFIES representations of these molecules.

The embeddings for the Supernatural3 database subset were generated using my laptop's NVIDIA GeForce 930M GPU, with a batch size of 64, so do for search.

Varenicline:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/Xvv14h48_Z4orWwMmj541.png)

top 10 (returned in 7.7s with visualization):

![image/png](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/uDBBc0iiupJJNi5VxnXDI.png)


| Rank | Cosine Similarity (%) | MW (Da) |     Name      | SMILES                                                     |
| :--: | :-------------------: | :-----: | :-----------: | ---------------------------------------------------------- |
|  1   |         92.23         | 212.13  |   SN0325329   | c1cc2c3c(c[nH]c3c1)CC1NCCCC21                              |
|  2   |         91.39         | 267.17  |   SN0232374   | c1ccc2c3c([nH]c2c1)C1CCN2CCCC2N1CC3                        |
|  3   |         91.36         | 212.13  | SN0325329-01  | c1cc2c3c(c[nH]c3c1)C[[C@H](mailto:C@H)]1NCCC[C@H]21        |
|  4   |         91.35         | 226.15  | SN0275712-02  | c1ccc2c3c([nH]c2c1)[[C@H](mailto:C@H)]1CCCCN1CC3           |
|  5   |         91.33         | 226.15  |   SN0275712   | c1ccc2c3c([nH]c2c1)C1CCCCN1CC3                             |
|  6   |         91.27         | 184.10  |   SN0027447   | CC1=C2N=c3ccccc3=C2CCN1                                    |
|  7   |         90.93         | 226.15  | SN0275712-01  | c1ccc2c3c([nH]c2c1)[C@@H]1CCCCN1CC3                        |
|  8   |         90.66         | 240.16  |   SN0048348   | c1ccc2c(c1)N1CCC[N+]=C1C21CCCCC1                           |
|  9   |         90.59         | 267.17  | 'SN0232374-01 | c1ccc2c3c([nH]c2c1)[[C@H](mailto:C@H)]1CCN2CCC[C@@H]2N1CC3 |
|  10  |         90.57         | 267.17  | 'SN0232374-02 | c1ccc2c3c([nH]c2c1)[C@@H]1CCN2CCC[C@@H]2N1CC3              |

#### Multiple Inputs by Averaging Embeddings

You can take multiple inputs then average their embeddings to find those most similar. 
For example, using 3 known nAChR α4β2 partial agonists: varenicline, SW4 (Zhang et al. 2012), and cytisine (using their isomeric SMILES)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/NIcb8U--JSSyg8UQJvioD.png)

then query similars based on the average embeddings (returned in 3.5s):

![image/png](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/0xlPdAv9hVmDx6x4SYOCT.png)


| Rank | Cosine Similarity (%) | MW (Da) |     Name     | SMILES                                                          |
| :--: | :-------------------: | :-----: | :----------: | --------------------------------------------------------------- |
|  1   |         89.37         | 219.10  |  SN0171732   | CN1C(=O)c2cccnc2OC2CNCC21                                       |
|  2   |         89.07         | 219.10  | SN0171732-01 | CN1C(=O)c2cccnc2O[[C@H](mailto:C@H)]2CNC[C@H]21                 |
|  3   |         88.75         | 218.14  | SN0181055-02 | CCN1C[C@@H]2C[C@@H](C1)c1cccc(=O)n1C2                           |
|  4   |         88.74         | 226.15  | SN0157407-02 | Cc1ccc2c(c1)c1c3n2CCN[[C@H](mailto:C@H)]3CCC1                   |
|  5   |         88.65         | 218.14  | SN0181055-01 | CCN1C[[C@H](mailto:C@H)]2C[C@@H](C1)c1cccc(=O)n1C2              |
|  6   |         88.62         | 226.15  | SN0157407-01 | Cc1ccc2c(c1)c1c3n2CCN[C@@H]3CCC1                                |
|  7   |         88.51         | 218.14  | SN0181055-03 | CCN1C[C@@H]2C[[C@H](mailto:C@H)](C1)c1cccc(=O)n1C2              |
|  8   |         88.50         | 294.17  | SN0126266-01 | C/C=C1/CN2CC[C@]34C=C(CO)[C@@H]1C[C@]23Nc1ccccc14               |
|  9   |         88.35         | 294.17  | SN0126266-04 | C/C=C1\\CN2CC[C@]34C=C(CO)[[C@H](mailto:C@H)]1C[C@]23Nc1ccccc14 |
|  10  |         88.19         | 242.14  | SN0095524-01 | OCc1ccc2c(c1)c1c3n2CCN[C@@H]3CCC1                               |

### Using L2 Distance
(WIP)

## Validation by Docking-based Virtual Screening
Validation by Docking-based Virtual Screening (DBVS) is finished, showing promising hit rates — ranging from 26% to 58% within the top 100 similar compounds from SuperNatural3 using the averaged embeddings of nAChR α4β2 partial agonists, depending on the threshold applied. 
However, some of the methods used are adapted from my undergraduate thesis, which is still in progress and pending publication. 
Detailed results and methodologies will be fully disclosed after the thesis is published.

## Testing Generated Embeddings' Clusters
The plot below shows how the model's embeddings (at this stage) cluster different classes of compounds, compared to using MACCS fingerprints.

Using perplexity of 20 over 5500 iterations.
2D:

![image](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/4dnt3QsdHwCeCvX7sK1Ud.png)

![image](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/_PJ8ASK4G7velmZy8geFC.png)

For a more simple separation between two classes, for example active natural nAChR-α4β2 agonists vs anticoagulants (perplexity = 5):

![image](https://cdn-uploads.huggingface.co/production/uploads/667da868d653c0b02d6a2399/REpFy4O-gPx_eie-7ioDA.png)

### Framework Versions
- Python: 3.9.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
- RDKit: 2024.3.3

## Citation

### BibTeX

#### ChemFIE-Base
```bibtex
@software{chemfie_basebertmlm,
  author = {GP Bayu},
  title = {{ChemFIE Base}: Pretraining A Lightweight BERT-like model on Molecular SELFIES},
  url = {https://huggingface.co/gbyuvd/chemselfies-base-bertmlm},
  version = {1.0},
  year = {2024},
}

```

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```
#### COCONUTDB
```bibtex
@article{sorokina2021coconut,
  title={COCONUT online: Collection of Open Natural Products database},
  author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
  journal={Journal of Cheminformatics},
  volume={13},
  number={1},
  pages={2},
  year={2021},
  doi={10.1186/s13321-020-00478-9}
}
```
#### ChemBL34
```bibtex
@article{zdrazil2023chembl,
  title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
  author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
  journal={Nucleic Acids Research},
  year={2023},
  volume={gkad1004},
  doi={10.1093/nar/gkad1004}
}

@misc{chembl34,
  title={ChemBL34},
  year={2023},
  doi={10.6019/CHEMBL.database.34}
}
```

#### SuperNatural3
```bibtex
@article{Gallo2023,
  author = {Gallo, K and Kemmler, E and Goede, A and Becker, F and Dunkel, M and Preissner, R and Banerjee, P},
  title = {{SuperNatural 3.0-a database of natural products and natural product-based derivatives}},
  journal = {Nucleic Acids Research},
  year = {2023},
  month = jan,
  day = {6},
  volume = {51},
  number = {D1},
  pages = {D654-D659},
  doi = {10.1093/nar/gkac1008}
}
```
### Partial Agonism of SW4
```bibtex
@article{Zhang2012,
  author = {Zhang, H. and Eaton, J. B. and Yu, L. and Nys, M. and Mazzolari, A. and Van Elk, R. and Smit, A. B. and Alexandrov, V. and Hanania, T. and Sabath, E. and Fedolak, A. and Brunner, D. and Lukas, R. J. and Vistoli, G. and Ulens, C. and Kozikowski, A. P.},
  title = {Insights Into the Structural Determinants Required for High-Affinity Binding of Chiral Cyclopropane-Containing Ligands to Alpha4Beta2-Nicotinic Acetylcholine Receptors: An Integrated Approach to Behaviorally Active Nicotinic Ligands},
  journal = {Journal of Medicinal Chemistry},
  year = {2012},
  volume = {55},
  pages = {8028},
  doi = {10.1021/jm3008739}
}
```
## Contact & Support My Work

G Bayu (gbyuvd@proton.me)

This project has been quiet a journey for me, I’ve dedicated hours on this and I would like to improve myself, this model, and future projects. However, financial and computational constraints can be challenging.

If you find my work valuable and would like to support my journey, please consider supporting me [here](https://ko-fi.com/gbyuvd). Your support will help me cover costs for computational resources, data acquisition, and further development of this project. Any amount, big or small, is greatly appreciated and will enable me to continue learning and explore more.

Thank you for checking out this model, I am more than happy to receive any feedback, so that I can improve myself and the future model/projects I will be working on.