--- license: mit tags: - automl - autogluon - image-classification - neural-network - computer-vision - education library_name: autogluon datasets: - ecopus/sign_identification model-index: - name: HW2 Neural AutoML — AutoGluon MultiModalPredictor (Signs) results: - task: name: Image Classification type: image-classification dataset: name: ecopus/sign_identification type: ecopus/sign_identification split: test metrics: - name: Accuracy type: accuracy value: 0.4286 - name: Macro-F1 type: f1 value: 0.3 --- # HW2 Neural AutoML — AutoGluon MultiModalPredictor (Signs) ## Model Overview This model is a supervised image classification on a classmate’s dataset (`ecopus/sign_identification`) using **AutoGluon Multimodal**. It builds a compact model under a small compute budget and report results with a clear, reproducible pipeline. ## Summary - **Backbone:** `resnet18` (via timm) - **Input resolution:** 224×224 (images resized in Colab) - **Train/Val/Test:** ~64% / 16% / 20% split (stratified) - **Epochs:** 3 (short budget, early-stop not overridden) - **Batch size:** 8 - **Metric (val):** Accuracy + Macro-F1 - **Result (test):** Accuracy = **0.4286**, Macro-F1 = **0.3** ## Dataset - **Source:** `ecopus/sign_identification` - **Task:** Multiclass sign recognition - **Classes:** Stop, Yield, SpeedLimit, NoEntry, Crosswalk - **Preprocessing:** - `datasets` → decode to `PIL` - Resize to 224×224, RGB - Labels normalized to integers/strings for AutoGluon ## Training & AutoML Setup **Library:** `autogluon.multimodal.MultiModalPredictor` **Problem type:** `multiclass` **Eval metric:** `accuracy` (Macro-F1 also reported) ## AI Tool Disclosure This notebook used ChatGPT for scaffolding code and documentation. All dataset selection, training, evaluation, and uploads were performed by the student.