gongysh2004 commited on
Commit
1ff932a
·
verified ·
1 Parent(s): 940db63

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:100000
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: A man is jumping unto his filthy bed.
14
+ sentences:
15
+ - A young male is looking at a newspaper while 2 females walks past him.
16
+ - The bed is dirty.
17
+ - The man is on the moon.
18
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
19
+ beach area.
20
+ sentences:
21
+ - A man is ouside near the beach.
22
+ - Three policemen patrol the streets on bikes
23
+ - A man is sitting on his couch.
24
+ - source_sentence: The man is wearing a blue shirt.
25
+ sentences:
26
+ - Near the trashcan the man stood and smoked
27
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
28
+ with water in the background.
29
+ - A man in a black shirt is playing a guitar.
30
+ - source_sentence: The girls are outdoors.
31
+ sentences:
32
+ - Two girls riding on an amusement part ride.
33
+ - a guy laughs while doing laundry
34
+ - Three girls are standing together in a room, one is listening, one is writing
35
+ on a wall and the third is talking to them.
36
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
37
+ sits on the sidewalk smiling.
38
+ sentences:
39
+ - A worker is looking out of a manhole.
40
+ - A man is giving a presentation.
41
+ - The workers are both inside the manhole.
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - cosine_accuracy
46
+ model-index:
47
+ - name: MPNet base trained on AllNLI triplets
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: all nli dev
54
+ type: all-nli-dev
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.9123632907867432
58
+ name: Cosine Accuracy
59
+ - task:
60
+ type: triplet
61
+ name: Triplet
62
+ dataset:
63
+ name: all nli test
64
+ type: all-nli-test
65
+ metrics:
66
+ - type: cosine_accuracy
67
+ value: 0.9238916635513306
68
+ name: Cosine Accuracy
69
+ ---
70
+
71
+ # MPNet base trained on AllNLI triplets
72
+
73
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** Sentence Transformer
79
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
80
+ - **Maximum Sequence Length:** 512 tokens
81
+ - **Output Dimensionality:** 768 dimensions
82
+ - **Similarity Function:** Cosine Similarity
83
+ - **Training Dataset:**
84
+ - all-nli
85
+ - **Language:** en
86
+ - **License:** apache-2.0
87
+
88
+ ### Model Sources
89
+
90
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
91
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
92
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
93
+
94
+ ### Full Model Architecture
95
+
96
+ ```
97
+ SentenceTransformer(
98
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
99
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
100
+ )
101
+ ```
102
+
103
+ ## Usage
104
+
105
+ ### Direct Usage (Sentence Transformers)
106
+
107
+ First install the Sentence Transformers library:
108
+
109
+ ```bash
110
+ pip install -U sentence-transformers
111
+ ```
112
+
113
+ Then you can load this model and run inference.
114
+ ```python
115
+ from sentence_transformers import SentenceTransformer
116
+
117
+ # Download from the 🤗 Hub
118
+ model = SentenceTransformer("gongysh2004/mpnet-base-all-nli-triplet")
119
+ # Run inference
120
+ sentences = [
121
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
122
+ 'A worker is looking out of a manhole.',
123
+ 'The workers are both inside the manhole.',
124
+ ]
125
+ embeddings = model.encode(sentences)
126
+ print(embeddings.shape)
127
+ # [3, 768]
128
+
129
+ # Get the similarity scores for the embeddings
130
+ similarities = model.similarity(embeddings, embeddings)
131
+ print(similarities.shape)
132
+ # [3, 3]
133
+ ```
134
+
135
+ <!--
136
+ ### Direct Usage (Transformers)
137
+
138
+ <details><summary>Click to see the direct usage in Transformers</summary>
139
+
140
+ </details>
141
+ -->
142
+
143
+ <!--
144
+ ### Downstream Usage (Sentence Transformers)
145
+
146
+ You can finetune this model on your own dataset.
147
+
148
+ <details><summary>Click to expand</summary>
149
+
150
+ </details>
151
+ -->
152
+
153
+ <!--
154
+ ### Out-of-Scope Use
155
+
156
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
157
+ -->
158
+
159
+ ## Evaluation
160
+
161
+ ### Metrics
162
+
163
+ #### Triplet
164
+
165
+ * Datasets: `all-nli-dev` and `all-nli-test`
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | all-nli-dev | all-nli-test |
169
+ |:--------------------|:------------|:-------------|
170
+ | **cosine_accuracy** | **0.9124** | **0.9239** |
171
+
172
+ <!--
173
+ ## Bias, Risks and Limitations
174
+
175
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
176
+ -->
177
+
178
+ <!--
179
+ ### Recommendations
180
+
181
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
182
+ -->
183
+
184
+ ## Training Details
185
+
186
+ ### Training Dataset
187
+
188
+ #### all-nli
189
+
190
+ * Dataset: all-nli
191
+ * Size: 100,000 training samples
192
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
193
+ * Approximate statistics based on the first 1000 samples:
194
+ | | anchor | positive | negative |
195
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
196
+ | type | string | string | string |
197
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
198
+ * Samples:
199
+ | anchor | positive | negative |
200
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
201
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
202
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
203
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
204
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
205
+ ```json
206
+ {
207
+ "scale": 20.0,
208
+ "similarity_fct": "cos_sim"
209
+ }
210
+ ```
211
+
212
+ ### Evaluation Dataset
213
+
214
+ #### all-nli
215
+
216
+ * Dataset: all-nli
217
+ * Size: 6,584 evaluation samples
218
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
219
+ * Approximate statistics based on the first 1000 samples:
220
+ | | anchor | positive | negative |
221
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
222
+ | type | string | string | string |
223
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
224
+ * Samples:
225
+ | anchor | positive | negative |
226
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
227
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
228
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
229
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
230
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
231
+ ```json
232
+ {
233
+ "scale": 20.0,
234
+ "similarity_fct": "cos_sim"
235
+ }
236
+ ```
237
+
238
+ ### Training Hyperparameters
239
+ #### Non-Default Hyperparameters
240
+
241
+ - `eval_strategy`: steps
242
+ - `per_device_train_batch_size`: 16
243
+ - `per_device_eval_batch_size`: 16
244
+ - `num_train_epochs`: 1
245
+ - `warmup_ratio`: 0.1
246
+ - `bf16`: True
247
+ - `batch_sampler`: no_duplicates
248
+
249
+ #### All Hyperparameters
250
+ <details><summary>Click to expand</summary>
251
+
252
+ - `overwrite_output_dir`: False
253
+ - `do_predict`: False
254
+ - `eval_strategy`: steps
255
+ - `prediction_loss_only`: True
256
+ - `per_device_train_batch_size`: 16
257
+ - `per_device_eval_batch_size`: 16
258
+ - `per_gpu_train_batch_size`: None
259
+ - `per_gpu_eval_batch_size`: None
260
+ - `gradient_accumulation_steps`: 1
261
+ - `eval_accumulation_steps`: None
262
+ - `torch_empty_cache_steps`: None
263
+ - `learning_rate`: 5e-05
264
+ - `weight_decay`: 0.0
265
+ - `adam_beta1`: 0.9
266
+ - `adam_beta2`: 0.999
267
+ - `adam_epsilon`: 1e-08
268
+ - `max_grad_norm`: 1.0
269
+ - `num_train_epochs`: 1
270
+ - `max_steps`: -1
271
+ - `lr_scheduler_type`: linear
272
+ - `lr_scheduler_kwargs`: {}
273
+ - `warmup_ratio`: 0.1
274
+ - `warmup_steps`: 0
275
+ - `log_level`: passive
276
+ - `log_level_replica`: warning
277
+ - `log_on_each_node`: True
278
+ - `logging_nan_inf_filter`: True
279
+ - `save_safetensors`: True
280
+ - `save_on_each_node`: False
281
+ - `save_only_model`: False
282
+ - `restore_callback_states_from_checkpoint`: False
283
+ - `no_cuda`: False
284
+ - `use_cpu`: False
285
+ - `use_mps_device`: False
286
+ - `seed`: 42
287
+ - `data_seed`: None
288
+ - `jit_mode_eval`: False
289
+ - `use_ipex`: False
290
+ - `bf16`: True
291
+ - `fp16`: False
292
+ - `fp16_opt_level`: O1
293
+ - `half_precision_backend`: auto
294
+ - `bf16_full_eval`: False
295
+ - `fp16_full_eval`: False
296
+ - `tf32`: None
297
+ - `local_rank`: 0
298
+ - `ddp_backend`: None
299
+ - `tpu_num_cores`: None
300
+ - `tpu_metrics_debug`: False
301
+ - `debug`: []
302
+ - `dataloader_drop_last`: False
303
+ - `dataloader_num_workers`: 0
304
+ - `dataloader_prefetch_factor`: None
305
+ - `past_index`: -1
306
+ - `disable_tqdm`: False
307
+ - `remove_unused_columns`: True
308
+ - `label_names`: None
309
+ - `load_best_model_at_end`: False
310
+ - `ignore_data_skip`: False
311
+ - `fsdp`: []
312
+ - `fsdp_min_num_params`: 0
313
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
314
+ - `fsdp_transformer_layer_cls_to_wrap`: None
315
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
316
+ - `deepspeed`: None
317
+ - `label_smoothing_factor`: 0.0
318
+ - `optim`: adamw_torch
319
+ - `optim_args`: None
320
+ - `adafactor`: False
321
+ - `group_by_length`: False
322
+ - `length_column_name`: length
323
+ - `ddp_find_unused_parameters`: None
324
+ - `ddp_bucket_cap_mb`: None
325
+ - `ddp_broadcast_buffers`: False
326
+ - `dataloader_pin_memory`: True
327
+ - `dataloader_persistent_workers`: False
328
+ - `skip_memory_metrics`: True
329
+ - `use_legacy_prediction_loop`: False
330
+ - `push_to_hub`: False
331
+ - `resume_from_checkpoint`: None
332
+ - `hub_model_id`: None
333
+ - `hub_strategy`: every_save
334
+ - `hub_private_repo`: None
335
+ - `hub_always_push`: False
336
+ - `gradient_checkpointing`: False
337
+ - `gradient_checkpointing_kwargs`: None
338
+ - `include_inputs_for_metrics`: False
339
+ - `include_for_metrics`: []
340
+ - `eval_do_concat_batches`: True
341
+ - `fp16_backend`: auto
342
+ - `push_to_hub_model_id`: None
343
+ - `push_to_hub_organization`: None
344
+ - `mp_parameters`:
345
+ - `auto_find_batch_size`: False
346
+ - `full_determinism`: False
347
+ - `torchdynamo`: None
348
+ - `ray_scope`: last
349
+ - `ddp_timeout`: 1800
350
+ - `torch_compile`: False
351
+ - `torch_compile_backend`: None
352
+ - `torch_compile_mode`: None
353
+ - `include_tokens_per_second`: False
354
+ - `include_num_input_tokens_seen`: False
355
+ - `neftune_noise_alpha`: None
356
+ - `optim_target_modules`: None
357
+ - `batch_eval_metrics`: False
358
+ - `eval_on_start`: False
359
+ - `use_liger_kernel`: False
360
+ - `eval_use_gather_object`: False
361
+ - `average_tokens_across_devices`: False
362
+ - `prompts`: None
363
+ - `batch_sampler`: no_duplicates
364
+ - `multi_dataset_batch_sampler`: proportional
365
+
366
+ </details>
367
+
368
+ ### Training Logs
369
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy | all-nli-test_cosine_accuracy |
370
+ |:-----:|:----:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|
371
+ | -1 | -1 | - | - | 0.6211 | - |
372
+ | 0.016 | 100 | 2.5621 | 0.8215 | 0.7918 | - |
373
+ | 0.032 | 200 | 1.1921 | 0.5966 | 0.8314 | - |
374
+ | 0.048 | 300 | 0.9665 | 0.5667 | 0.8379 | - |
375
+ | 0.064 | 400 | 0.9082 | 0.5386 | 0.8489 | - |
376
+ | 0.08 | 500 | 0.8789 | 0.4822 | 0.8733 | - |
377
+ | 0.096 | 600 | 0.8698 | 0.4591 | 0.8844 | - |
378
+ | 0.112 | 700 | 0.8216 | 0.5016 | 0.8826 | - |
379
+ | 0.128 | 800 | 0.8062 | 0.5487 | 0.8820 | - |
380
+ | 0.144 | 900 | 0.7559 | 0.5344 | 0.8829 | - |
381
+ | 0.16 | 1000 | 0.672 | 0.5436 | 0.8714 | - |
382
+ | 0.176 | 1100 | 0.715 | 0.4816 | 0.8820 | - |
383
+ | 0.192 | 1200 | 0.6801 | 0.4801 | 0.8923 | - |
384
+ | 0.208 | 1300 | 0.6512 | 0.4848 | 0.8976 | - |
385
+ | 0.224 | 1400 | 0.6277 | 0.4698 | 0.8903 | - |
386
+ | 0.24 | 1500 | 0.6759 | 0.4804 | 0.8884 | - |
387
+ | 0.256 | 1600 | 0.6087 | 0.4260 | 0.9005 | - |
388
+ | 0.272 | 1700 | 0.6139 | 0.4445 | 0.8837 | - |
389
+ | 0.288 | 1800 | 0.5811 | 0.4439 | 0.8975 | - |
390
+ | 0.304 | 1900 | 0.504 | 0.4258 | 0.9017 | - |
391
+ | 0.32 | 2000 | 0.5033 | 0.4708 | 0.9013 | - |
392
+ | 0.336 | 2100 | 0.5079 | 0.4197 | 0.9020 | - |
393
+ | 0.352 | 2200 | 0.4983 | 0.4201 | 0.9028 | - |
394
+ | 0.368 | 2300 | 0.489 | 0.4453 | 0.9007 | - |
395
+ | 0.384 | 2400 | 0.4971 | 0.4311 | 0.8969 | - |
396
+ | 0.4 | 2500 | 0.4914 | 0.4363 | 0.8947 | - |
397
+ | 0.416 | 2600 | 0.4912 | 0.4385 | 0.8979 | - |
398
+ | 0.432 | 2700 | 0.5383 | 0.4317 | 0.8958 | - |
399
+ | 0.448 | 2800 | 0.4387 | 0.4080 | 0.9033 | - |
400
+ | 0.464 | 2900 | 0.4843 | 0.4177 | 0.9017 | - |
401
+ | 0.48 | 3000 | 0.4624 | 0.3976 | 0.9040 | - |
402
+ | 0.496 | 3100 | 0.4672 | 0.3934 | 0.9069 | - |
403
+ | 0.512 | 3200 | 0.4037 | 0.4099 | 0.9031 | - |
404
+ | 0.528 | 3300 | 0.4281 | 0.4070 | 0.9011 | - |
405
+ | 0.544 | 3400 | 0.4489 | 0.4059 | 0.9067 | - |
406
+ | 0.56 | 3500 | 0.4163 | 0.3916 | 0.9055 | - |
407
+ | 0.576 | 3600 | 0.3578 | 0.4016 | 0.9058 | - |
408
+ | 0.592 | 3700 | 0.4192 | 0.3895 | 0.9037 | - |
409
+ | 0.608 | 3800 | 0.3843 | 0.4166 | 0.9072 | - |
410
+ | 0.624 | 3900 | 0.387 | 0.3931 | 0.9107 | - |
411
+ | 0.64 | 4000 | 0.3924 | 0.3696 | 0.9128 | - |
412
+ | 0.656 | 4100 | 0.3209 | 0.3900 | 0.9052 | - |
413
+ | 0.672 | 4200 | 0.3363 | 0.3792 | 0.9055 | - |
414
+ | 0.688 | 4300 | 0.3834 | 0.3784 | 0.9045 | - |
415
+ | 0.704 | 4400 | 0.3218 | 0.3968 | 0.8975 | - |
416
+ | 0.72 | 4500 | 0.3702 | 0.4029 | 0.9036 | - |
417
+ | 0.736 | 4600 | 0.3243 | 0.3770 | 0.9084 | - |
418
+ | 0.752 | 4700 | 0.3423 | 0.3785 | 0.9081 | - |
419
+ | 0.768 | 4800 | 0.3606 | 0.3742 | 0.9092 | - |
420
+ | 0.784 | 4900 | 0.3709 | 0.3736 | 0.9095 | - |
421
+ | 0.8 | 5000 | 0.3014 | 0.3787 | 0.9078 | - |
422
+ | 0.816 | 5100 | 0.3205 | 0.3783 | 0.9064 | - |
423
+ | 0.832 | 5200 | 0.311 | 0.3753 | 0.9098 | - |
424
+ | 0.848 | 5300 | 0.315 | 0.3712 | 0.9111 | - |
425
+ | 0.864 | 5400 | 0.3096 | 0.3784 | 0.9127 | - |
426
+ | 0.88 | 5500 | 0.3247 | 0.3691 | 0.9116 | - |
427
+ | 0.896 | 5600 | 0.3055 | 0.3635 | 0.9124 | - |
428
+ | 0.912 | 5700 | 0.3209 | 0.3644 | 0.9128 | - |
429
+ | 0.928 | 5800 | 0.2887 | 0.3619 | 0.9113 | - |
430
+ | 0.944 | 5900 | 0.2786 | 0.3608 | 0.9119 | - |
431
+ | 0.96 | 6000 | 0.3119 | 0.3583 | 0.9119 | - |
432
+ | 0.976 | 6100 | 0.3048 | 0.3590 | 0.9122 | - |
433
+ | 0.992 | 6200 | 0.1677 | 0.3578 | 0.9124 | - |
434
+ | -1 | -1 | - | - | - | 0.9239 |
435
+
436
+
437
+ ### Framework Versions
438
+ - Python: 3.10.12
439
+ - Sentence Transformers: 4.1.0
440
+ - Transformers: 4.52.4
441
+ - PyTorch: 2.7.1+cu126
442
+ - Accelerate: 1.7.0
443
+ - Datasets: 3.6.0
444
+ - Tokenizers: 0.21.1
445
+
446
+ ## Citation
447
+
448
+ ### BibTeX
449
+
450
+ #### Sentence Transformers
451
+ ```bibtex
452
+ @inproceedings{reimers-2019-sentence-bert,
453
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
454
+ author = "Reimers, Nils and Gurevych, Iryna",
455
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
456
+ month = "11",
457
+ year = "2019",
458
+ publisher = "Association for Computational Linguistics",
459
+ url = "https://arxiv.org/abs/1908.10084",
460
+ }
461
+ ```
462
+
463
+ #### MultipleNegativesRankingLoss
464
+ ```bibtex
465
+ @misc{henderson2017efficient,
466
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
467
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
468
+ year={2017},
469
+ eprint={1705.00652},
470
+ archivePrefix={arXiv},
471
+ primaryClass={cs.CL}
472
+ }
473
+ ```
474
+
475
+ <!--
476
+ ## Glossary
477
+
478
+ *Clearly define terms in order to be accessible across audiences.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Authors
483
+
484
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Contact
489
+
490
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
491
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.7.1+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c0788832dca888df0698ca716a2cd80d4a909dce5817aee6243bc9d5d278263
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 512,
60
+ "model_max_length": 512,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff