gradients-io-tournaments commited on
Commit
8de0bd3
·
verified ·
1 Parent(s): 2250807

Upload task output 6546a409-d526-4555-8fc3-6f63b91952cd

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gradients-io-tournaments/f68daf12-f640-4a1c-ba2d-291d7a9c3429
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gradients-io-tournaments/f68daf12-f640-4a1c-ba2d-291d7a9c3429",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 512,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 128,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "k_proj",
29
+ "o_proj",
30
+ "q_proj",
31
+ "down_proj",
32
+ "v_proj",
33
+ "gate_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a424b8ab8797c3f41fd76bb5adf50b23a4cd362f241d29812d7653813f707fda
3
+ size 3313655720
loss.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 605,0.8133310079574585
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "boi_token": "<start_of_image>",
7
+ "bos_token": {
8
+ "content": "<bos>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eoi_token": "<end_of_image>",
15
+ "eos_token": {
16
+ "content": "<eos>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "image_token": "<image_soft_token>",
23
+ "pad_token": {
24
+ "content": "<eos>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "<unk>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c5591c1449f71a5ae4c2ed1cb1cbdadf42e4cc9537c9850184d520a42cb18dc
3
+ size 33384944
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,897 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9983498349834984,
6
+ "eval_steps": 500,
7
+ "global_step": 605,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.00825082508250825,
14
+ "grad_norm": 0.1109217901630045,
15
+ "learning_rate": 9.230977828571428e-06,
16
+ "loss": 0.6996,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.0165016501650165,
21
+ "grad_norm": 0.1079280711895366,
22
+ "learning_rate": 2.0769700114285712e-05,
23
+ "loss": 0.7131,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.024752475247524754,
28
+ "grad_norm": 0.12194277489126788,
29
+ "learning_rate": 3.23084224e-05,
30
+ "loss": 0.7076,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.033003300330033,
35
+ "grad_norm": 0.11703283788506436,
36
+ "learning_rate": 4.384714468571428e-05,
37
+ "loss": 0.7309,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.041254125412541254,
42
+ "grad_norm": 0.13195891160346676,
43
+ "learning_rate": 5.5385866971428566e-05,
44
+ "loss": 0.7281,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.04950495049504951,
49
+ "grad_norm": 0.1086769468743628,
50
+ "learning_rate": 6.692458925714286e-05,
51
+ "loss": 0.6704,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.057755775577557754,
56
+ "grad_norm": 0.10133228628071816,
57
+ "learning_rate": 7.846331154285714e-05,
58
+ "loss": 0.66,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.066006600660066,
63
+ "grad_norm": 0.10991596007303452,
64
+ "learning_rate": 8.077030373253913e-05,
65
+ "loss": 0.6782,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.07425742574257425,
70
+ "grad_norm": 0.10299322280255592,
71
+ "learning_rate": 8.076724771002127e-05,
72
+ "loss": 0.6333,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.08250825082508251,
77
+ "grad_norm": 0.10765477907576462,
78
+ "learning_rate": 8.076184115273458e-05,
79
+ "loss": 0.6667,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.09075907590759076,
84
+ "grad_norm": 0.09592084729245812,
85
+ "learning_rate": 8.0754084480298e-05,
86
+ "loss": 0.6638,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.09900990099009901,
91
+ "grad_norm": 0.10331536135213028,
92
+ "learning_rate": 8.074397829472986e-05,
93
+ "loss": 0.7187,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.10726072607260725,
98
+ "grad_norm": 0.11074455533529015,
99
+ "learning_rate": 8.073152338040115e-05,
100
+ "loss": 0.7264,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.11551155115511551,
105
+ "grad_norm": 0.11331253823850916,
106
+ "learning_rate": 8.071672070397465e-05,
107
+ "loss": 0.6979,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.12376237623762376,
112
+ "grad_norm": 0.09909826847951773,
113
+ "learning_rate": 8.069957141432996e-05,
114
+ "loss": 0.6886,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.132013201320132,
119
+ "grad_norm": 0.1102036040341218,
120
+ "learning_rate": 8.068007684247422e-05,
121
+ "loss": 0.7248,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.14026402640264027,
126
+ "grad_norm": 0.10233573035333016,
127
+ "learning_rate": 8.065823850143891e-05,
128
+ "loss": 0.7007,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.1485148514851485,
133
+ "grad_norm": 0.11318472169518733,
134
+ "learning_rate": 8.063405808616236e-05,
135
+ "loss": 0.7065,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.15676567656765678,
140
+ "grad_norm": 0.09736084830545598,
141
+ "learning_rate": 8.060753747335823e-05,
142
+ "loss": 0.6768,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.16501650165016502,
147
+ "grad_norm": 0.10655098611266442,
148
+ "learning_rate": 8.057867872136982e-05,
149
+ "loss": 0.6811,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.17326732673267325,
154
+ "grad_norm": 0.10235404832102123,
155
+ "learning_rate": 8.054748407001038e-05,
156
+ "loss": 0.705,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.18151815181518152,
161
+ "grad_norm": 0.11226503528883268,
162
+ "learning_rate": 8.051395594038919e-05,
163
+ "loss": 0.6616,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.18976897689768976,
168
+ "grad_norm": 0.10423993294609094,
169
+ "learning_rate": 8.04780969347237e-05,
170
+ "loss": 0.7013,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.19801980198019803,
175
+ "grad_norm": 0.09696063297767098,
176
+ "learning_rate": 8.043990983613759e-05,
177
+ "loss": 0.7077,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.20627062706270627,
182
+ "grad_norm": 0.1023779789220443,
183
+ "learning_rate": 8.039939760844466e-05,
184
+ "loss": 0.6759,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.2145214521452145,
189
+ "grad_norm": 0.10241506704665838,
190
+ "learning_rate": 8.035656339591892e-05,
191
+ "loss": 0.701,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.22277227722772278,
196
+ "grad_norm": 0.10783128023486195,
197
+ "learning_rate": 8.031141052305049e-05,
198
+ "loss": 0.6905,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.23102310231023102,
203
+ "grad_norm": 0.10259339913296676,
204
+ "learning_rate": 8.026394249428757e-05,
205
+ "loss": 0.7042,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.23927392739273928,
210
+ "grad_norm": 0.10386332679268319,
211
+ "learning_rate": 8.021416299376446e-05,
212
+ "loss": 0.6847,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.24752475247524752,
217
+ "grad_norm": 0.10727312758751012,
218
+ "learning_rate": 8.01620758850157e-05,
219
+ "loss": 0.7158,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.25577557755775576,
224
+ "grad_norm": 0.10081199335904906,
225
+ "learning_rate": 8.010768521067604e-05,
226
+ "loss": 0.7314,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.264026402640264,
231
+ "grad_norm": 0.09947690530809786,
232
+ "learning_rate": 8.005099519216686e-05,
233
+ "loss": 0.6556,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.2722772277227723,
238
+ "grad_norm": 0.0998920584555826,
239
+ "learning_rate": 7.999201022936842e-05,
240
+ "loss": 0.6959,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.28052805280528054,
245
+ "grad_norm": 0.10002463919928152,
246
+ "learning_rate": 7.993073490027837e-05,
247
+ "loss": 0.6676,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.2887788778877888,
252
+ "grad_norm": 0.09795956362270347,
253
+ "learning_rate": 7.986717396065655e-05,
254
+ "loss": 0.6991,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.297029702970297,
259
+ "grad_norm": 0.09999716542424185,
260
+ "learning_rate": 7.980133234365572e-05,
261
+ "loss": 0.6867,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.30528052805280526,
266
+ "grad_norm": 0.110570313613684,
267
+ "learning_rate": 7.973321515943883e-05,
268
+ "loss": 0.7301,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.31353135313531355,
273
+ "grad_norm": 0.09730577084971076,
274
+ "learning_rate": 7.966282769478233e-05,
275
+ "loss": 0.6784,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.3217821782178218,
280
+ "grad_norm": 0.10249606843125265,
281
+ "learning_rate": 7.959017541266581e-05,
282
+ "loss": 0.7077,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.33003300330033003,
287
+ "grad_norm": 0.10212092732514494,
288
+ "learning_rate": 7.951526395184813e-05,
289
+ "loss": 0.6826,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.33828382838283827,
294
+ "grad_norm": 0.11727787532779357,
295
+ "learning_rate": 7.943809912642963e-05,
296
+ "loss": 0.656,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.3465346534653465,
301
+ "grad_norm": 0.1004631402576947,
302
+ "learning_rate": 7.935868692540102e-05,
303
+ "loss": 0.6927,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.3547854785478548,
308
+ "grad_norm": 0.10355590169694925,
309
+ "learning_rate": 7.927703351217842e-05,
310
+ "loss": 0.7195,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.36303630363036304,
315
+ "grad_norm": 0.11016608834417882,
316
+ "learning_rate": 7.919314522412511e-05,
317
+ "loss": 0.7359,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.3712871287128713,
322
+ "grad_norm": 0.10627797656006266,
323
+ "learning_rate": 7.910702857205961e-05,
324
+ "loss": 0.7205,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.3795379537953795,
329
+ "grad_norm": 0.10013473212295951,
330
+ "learning_rate": 7.901869023975037e-05,
331
+ "loss": 0.6766,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.38778877887788776,
336
+ "grad_norm": 0.11465309438007484,
337
+ "learning_rate": 7.892813708339704e-05,
338
+ "loss": 0.6874,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.39603960396039606,
343
+ "grad_norm": 0.10038189798772329,
344
+ "learning_rate": 7.883537613109833e-05,
345
+ "loss": 0.6474,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.4042904290429043,
350
+ "grad_norm": 0.10421646450135963,
351
+ "learning_rate": 7.874041458230648e-05,
352
+ "loss": 0.703,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.41254125412541254,
357
+ "grad_norm": 0.12217594041209018,
358
+ "learning_rate": 7.864325980726862e-05,
359
+ "loss": 0.703,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.4207920792079208,
364
+ "grad_norm": 0.11252410565227859,
365
+ "learning_rate": 7.854391934645459e-05,
366
+ "loss": 0.6955,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 0.429042904290429,
371
+ "grad_norm": 0.12078102363224934,
372
+ "learning_rate": 7.844240090997184e-05,
373
+ "loss": 0.701,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 0.4372937293729373,
378
+ "grad_norm": 0.10863585586575093,
379
+ "learning_rate": 7.833871237696693e-05,
380
+ "loss": 0.7132,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 0.44554455445544555,
385
+ "grad_norm": 0.09563437176495763,
386
+ "learning_rate": 7.823286179501403e-05,
387
+ "loss": 0.6858,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 0.4537953795379538,
392
+ "grad_norm": 0.11421103818288875,
393
+ "learning_rate": 7.812485737949037e-05,
394
+ "loss": 0.7121,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 0.46204620462046203,
399
+ "grad_norm": 0.11953247382851949,
400
+ "learning_rate": 7.801470751293855e-05,
401
+ "loss": 0.6956,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 0.47029702970297027,
406
+ "grad_norm": 0.1266115959025527,
407
+ "learning_rate": 7.790242074441599e-05,
408
+ "loss": 0.688,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 0.47854785478547857,
413
+ "grad_norm": 0.11648609420312882,
414
+ "learning_rate": 7.778800578883142e-05,
415
+ "loss": 0.6911,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 0.4867986798679868,
420
+ "grad_norm": 0.11762881099851867,
421
+ "learning_rate": 7.767147152626842e-05,
422
+ "loss": 0.6945,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 0.49504950495049505,
427
+ "grad_norm": 0.11429683321227115,
428
+ "learning_rate": 7.755282700129635e-05,
429
+ "loss": 0.6892,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 0.5033003300330033,
434
+ "grad_norm": 0.10450773160582569,
435
+ "learning_rate": 7.743208142226819e-05,
436
+ "loss": 0.6391,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 0.5115511551155115,
441
+ "grad_norm": 0.10219535497500513,
442
+ "learning_rate": 7.730924416060601e-05,
443
+ "loss": 0.724,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 0.5198019801980198,
448
+ "grad_norm": 0.11574609265433186,
449
+ "learning_rate": 7.718432475007354e-05,
450
+ "loss": 0.6826,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 0.528052805280528,
455
+ "grad_norm": 0.11217826609258046,
456
+ "learning_rate": 7.705733288603626e-05,
457
+ "loss": 0.6785,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 0.5363036303630363,
462
+ "grad_norm": 0.11299742998586312,
463
+ "learning_rate": 7.69282784247089e-05,
464
+ "loss": 0.6792,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 0.5445544554455446,
469
+ "grad_norm": 0.10824042743323972,
470
+ "learning_rate": 7.67971713823905e-05,
471
+ "loss": 0.6698,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 0.5528052805280528,
476
+ "grad_norm": 0.11309367124567228,
477
+ "learning_rate": 7.666402193468696e-05,
478
+ "loss": 0.6736,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 0.5610561056105611,
483
+ "grad_norm": 0.12167568253923927,
484
+ "learning_rate": 7.65288404157213e-05,
485
+ "loss": 0.7555,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 0.5693069306930693,
490
+ "grad_norm": 0.0970452786135373,
491
+ "learning_rate": 7.639163731733167e-05,
492
+ "loss": 0.6637,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 0.5775577557755776,
497
+ "grad_norm": 0.10398626019080046,
498
+ "learning_rate": 7.625242328825694e-05,
499
+ "loss": 0.667,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 0.5858085808580858,
504
+ "grad_norm": 0.10466469521267713,
505
+ "learning_rate": 7.611120913331026e-05,
506
+ "loss": 0.6685,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 0.594059405940594,
511
+ "grad_norm": 0.09699310632336781,
512
+ "learning_rate": 7.59680058125405e-05,
513
+ "loss": 0.6544,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 0.6023102310231023,
518
+ "grad_norm": 0.1045628282615931,
519
+ "learning_rate": 7.582282444038156e-05,
520
+ "loss": 0.6857,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 0.6105610561056105,
525
+ "grad_norm": 0.11520677189307071,
526
+ "learning_rate": 7.567567628478979e-05,
527
+ "loss": 0.7186,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 0.6188118811881188,
532
+ "grad_norm": 0.11447834758784298,
533
+ "learning_rate": 7.552657276636944e-05,
534
+ "loss": 0.7113,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 0.6270627062706271,
539
+ "grad_norm": 0.1016515991153301,
540
+ "learning_rate": 7.53755254574862e-05,
541
+ "loss": 0.6624,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 0.6353135313531353,
546
+ "grad_norm": 0.10741656629850158,
547
+ "learning_rate": 7.522254608136916e-05,
548
+ "loss": 0.6907,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 0.6435643564356436,
553
+ "grad_norm": 0.108251704550908,
554
+ "learning_rate": 7.506764651120083e-05,
555
+ "loss": 0.7164,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 0.6518151815181518,
560
+ "grad_norm": 0.11089125041915984,
561
+ "learning_rate": 7.49108387691957e-05,
562
+ "loss": 0.6801,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 0.6600660066006601,
567
+ "grad_norm": 0.10269781298675916,
568
+ "learning_rate": 7.475213502566708e-05,
569
+ "loss": 0.6819,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 0.6683168316831684,
574
+ "grad_norm": 0.11063903685541557,
575
+ "learning_rate": 7.459154759808266e-05,
576
+ "loss": 0.668,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 0.6765676567656765,
581
+ "grad_norm": 0.11520213411474844,
582
+ "learning_rate": 7.442908895010832e-05,
583
+ "loss": 0.706,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 0.6848184818481848,
588
+ "grad_norm": 0.11340826064845087,
589
+ "learning_rate": 7.4264771690641e-05,
590
+ "loss": 0.7203,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 0.693069306930693,
595
+ "grad_norm": 0.10182339826739246,
596
+ "learning_rate": 7.40986085728299e-05,
597
+ "loss": 0.6611,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 0.7013201320132013,
602
+ "grad_norm": 0.11114269495165541,
603
+ "learning_rate": 7.393061249308681e-05,
604
+ "loss": 0.6717,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 0.7095709570957096,
609
+ "grad_norm": 0.11971729469914588,
610
+ "learning_rate": 7.37607964900851e-05,
611
+ "loss": 0.6721,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 0.7178217821782178,
616
+ "grad_norm": 0.11365942077245782,
617
+ "learning_rate": 7.358917374374776e-05,
618
+ "loss": 0.7085,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 0.7260726072607261,
623
+ "grad_norm": 0.11543073343399962,
624
+ "learning_rate": 7.341575757422454e-05,
625
+ "loss": 0.7003,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 0.7343234323432343,
630
+ "grad_norm": 0.10987487064626321,
631
+ "learning_rate": 7.324056144085803e-05,
632
+ "loss": 0.6966,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 0.7425742574257426,
637
+ "grad_norm": 0.11020238714339606,
638
+ "learning_rate": 7.306359894113908e-05,
639
+ "loss": 0.7114,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 0.7508250825082509,
644
+ "grad_norm": 0.11209340274285112,
645
+ "learning_rate": 7.288488380965147e-05,
646
+ "loss": 0.7218,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 0.759075907590759,
651
+ "grad_norm": 0.12877531625779254,
652
+ "learning_rate": 7.270442991700595e-05,
653
+ "loss": 0.6982,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 0.7673267326732673,
658
+ "grad_norm": 0.1117598157414889,
659
+ "learning_rate": 7.252225126876367e-05,
660
+ "loss": 0.7212,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 0.7755775577557755,
665
+ "grad_norm": 0.11279697876757706,
666
+ "learning_rate": 7.233836200434913e-05,
667
+ "loss": 0.6573,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 0.7838283828382838,
672
+ "grad_norm": 0.11434280774159107,
673
+ "learning_rate": 7.215277639595287e-05,
674
+ "loss": 0.6949,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 0.7920792079207921,
679
+ "grad_norm": 0.11543489128107651,
680
+ "learning_rate": 7.196550884742365e-05,
681
+ "loss": 0.674,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 0.8003300330033003,
686
+ "grad_norm": 0.11611954417882157,
687
+ "learning_rate": 7.177657389315065e-05,
688
+ "loss": 0.6863,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 0.8085808580858086,
693
+ "grad_norm": 0.119116453091791,
694
+ "learning_rate": 7.158598619693533e-05,
695
+ "loss": 0.6645,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 0.8168316831683168,
700
+ "grad_norm": 0.12456425654504054,
701
+ "learning_rate": 7.13937605508533e-05,
702
+ "loss": 0.7223,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 0.8250825082508251,
707
+ "grad_norm": 0.11284151814874993,
708
+ "learning_rate": 7.11999118741064e-05,
709
+ "loss": 0.6958,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 0.8250825082508251,
714
+ "eval_loss": 0.815915584564209,
715
+ "eval_runtime": 41.4268,
716
+ "eval_samples_per_second": 1.521,
717
+ "eval_steps_per_second": 0.193,
718
+ "step": 500
719
+ },
720
+ {
721
+ "epoch": 0.8333333333333334,
722
+ "grad_norm": 0.1230250072514643,
723
+ "learning_rate": 7.10044552118646e-05,
724
+ "loss": 0.6802,
725
+ "step": 505
726
+ },
727
+ {
728
+ "epoch": 0.8415841584158416,
729
+ "grad_norm": 0.12299958189793461,
730
+ "learning_rate": 7.080740573409843e-05,
731
+ "loss": 0.7014,
732
+ "step": 510
733
+ },
734
+ {
735
+ "epoch": 0.8498349834983498,
736
+ "grad_norm": 0.11213431363226725,
737
+ "learning_rate": 7.060877873440157e-05,
738
+ "loss": 0.7014,
739
+ "step": 515
740
+ },
741
+ {
742
+ "epoch": 0.858085808580858,
743
+ "grad_norm": 0.123893410660033,
744
+ "learning_rate": 7.04085896288038e-05,
745
+ "loss": 0.6833,
746
+ "step": 520
747
+ },
748
+ {
749
+ "epoch": 0.8663366336633663,
750
+ "grad_norm": 0.10624694364468523,
751
+ "learning_rate": 7.02068539545746e-05,
752
+ "loss": 0.6485,
753
+ "step": 525
754
+ },
755
+ {
756
+ "epoch": 0.8745874587458746,
757
+ "grad_norm": 0.11161342962422176,
758
+ "learning_rate": 7.000358736901722e-05,
759
+ "loss": 0.6752,
760
+ "step": 530
761
+ },
762
+ {
763
+ "epoch": 0.8828382838283828,
764
+ "grad_norm": 0.11213055579397066,
765
+ "learning_rate": 6.979880564825346e-05,
766
+ "loss": 0.6999,
767
+ "step": 535
768
+ },
769
+ {
770
+ "epoch": 0.8910891089108911,
771
+ "grad_norm": 0.11735024742206589,
772
+ "learning_rate": 6.959252468599926e-05,
773
+ "loss": 0.6589,
774
+ "step": 540
775
+ },
776
+ {
777
+ "epoch": 0.8993399339933993,
778
+ "grad_norm": 0.11402736912729902,
779
+ "learning_rate": 6.938476049233114e-05,
780
+ "loss": 0.695,
781
+ "step": 545
782
+ },
783
+ {
784
+ "epoch": 0.9075907590759076,
785
+ "grad_norm": 0.11257498599338571,
786
+ "learning_rate": 6.917552919244357e-05,
787
+ "loss": 0.6814,
788
+ "step": 550
789
+ },
790
+ {
791
+ "epoch": 0.9158415841584159,
792
+ "grad_norm": 0.12373640269866129,
793
+ "learning_rate": 6.896484702539755e-05,
794
+ "loss": 0.684,
795
+ "step": 555
796
+ },
797
+ {
798
+ "epoch": 0.9240924092409241,
799
+ "grad_norm": 0.11956271635788736,
800
+ "learning_rate": 6.875273034286008e-05,
801
+ "loss": 0.69,
802
+ "step": 560
803
+ },
804
+ {
805
+ "epoch": 0.9323432343234324,
806
+ "grad_norm": 0.10785285284383107,
807
+ "learning_rate": 6.853919560783526e-05,
808
+ "loss": 0.7083,
809
+ "step": 565
810
+ },
811
+ {
812
+ "epoch": 0.9405940594059405,
813
+ "grad_norm": 0.10722760959275023,
814
+ "learning_rate": 6.832425939338633e-05,
815
+ "loss": 0.6677,
816
+ "step": 570
817
+ },
818
+ {
819
+ "epoch": 0.9488448844884488,
820
+ "grad_norm": 0.10277491090545628,
821
+ "learning_rate": 6.810793838134964e-05,
822
+ "loss": 0.6698,
823
+ "step": 575
824
+ },
825
+ {
826
+ "epoch": 0.9570957095709571,
827
+ "grad_norm": 0.1063963058179587,
828
+ "learning_rate": 6.789024936103965e-05,
829
+ "loss": 0.6663,
830
+ "step": 580
831
+ },
832
+ {
833
+ "epoch": 0.9653465346534653,
834
+ "grad_norm": 0.1147344164814247,
835
+ "learning_rate": 6.767120922794605e-05,
836
+ "loss": 0.7234,
837
+ "step": 585
838
+ },
839
+ {
840
+ "epoch": 0.9735973597359736,
841
+ "grad_norm": 0.1060126783103328,
842
+ "learning_rate": 6.745083498242244e-05,
843
+ "loss": 0.7153,
844
+ "step": 590
845
+ },
846
+ {
847
+ "epoch": 0.9818481848184818,
848
+ "grad_norm": 0.11660595329599203,
849
+ "learning_rate": 6.722914372836674e-05,
850
+ "loss": 0.7178,
851
+ "step": 595
852
+ },
853
+ {
854
+ "epoch": 0.9900990099009901,
855
+ "grad_norm": 0.11158768870366531,
856
+ "learning_rate": 6.700615267189389e-05,
857
+ "loss": 0.6616,
858
+ "step": 600
859
+ },
860
+ {
861
+ "epoch": 0.9983498349834984,
862
+ "grad_norm": 0.12537561554397872,
863
+ "learning_rate": 6.67818791200003e-05,
864
+ "loss": 0.6907,
865
+ "step": 605
866
+ },
867
+ {
868
+ "epoch": 0.9983498349834984,
869
+ "eval_loss": 0.8133310079574585,
870
+ "eval_runtime": 39.2156,
871
+ "eval_samples_per_second": 1.607,
872
+ "eval_steps_per_second": 0.204,
873
+ "step": 605
874
+ }
875
+ ],
876
+ "logging_steps": 5,
877
+ "max_steps": 1818,
878
+ "num_input_tokens_seen": 0,
879
+ "num_train_epochs": 3,
880
+ "save_steps": 500,
881
+ "stateful_callbacks": {
882
+ "TrainerControl": {
883
+ "args": {
884
+ "should_epoch_stop": false,
885
+ "should_evaluate": false,
886
+ "should_log": false,
887
+ "should_save": true,
888
+ "should_training_stop": false
889
+ },
890
+ "attributes": {}
891
+ }
892
+ },
893
+ "total_flos": 627526934200320.0,
894
+ "train_batch_size": 8,
895
+ "trial_name": null,
896
+ "trial_params": null
897
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7d4bff3d2e63ac54fff8634a3acf8cb001b954aee4391492ab8c3c475955ed1
3
+ size 7480