BeitEAU is a fine-tuned version of BeitEAU-base-patch16-384-2025_11_07_78282-bs32_freeze. It achieves the following results on the test set:

  • Loss: 0.1647
  • F1 Micro: 0.7446
  • F1 Macro: 0.6015
  • Accuracy: 0.2171
Class F1 per class
Acropore_branched 0.7982
Acropore_digitised 0.4713
Acropore_sub_massive 0.2880
Acropore_tabular 0.8900
Algae_assembly 0.7410
Algae_drawn_up 0.3889
Algae_limestone 0.6890
Algae_sodding 0.8126
Atra/Leucospilota 0.6085
Bleached_coral 0.6994
Blurred 0.3471
Dead_coral 0.6977
Fish 0.6206
Homo_sapiens 0.5546
Human_object 0.7174
Living_coral 0.6376
Millepore 0.6636
No_acropore_encrusting 0.5906
No_acropore_foliaceous 0.7253
No_acropore_massive 0.5968
No_acropore_solitary 0.4364
No_acropore_sub_massive 0.6084
Rock 0.8513
Rubble 0.7116
Sand 0.8955
Sea_cucumber 0.6009
Sea_urchins 0.5445
Sponge 0.3689
Syringodium_isoetifolium 0.9401
Thalassodendron_ciliatum 0.9547
Useless 0.9686

Model description

BeitEAU is a model built on top of BeitEAU-base-patch16-384-2025_11_07_78282-bs32_freeze model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1480 469 459 2408
Acropore_digitised 571 156 161 888
Acropore_sub_massive 150 52 41 243
Acropore_tabular 999 292 298 1589
Algae_assembly 2554 842 842 4238
Algae_drawn_up 367 130 123 620
Algae_limestone 1651 562 559 2772
Algae_sodding 3142 994 981 5117
Atra/Leucospilota 1084 349 359 1792
Bleached_coral 219 69 72 360
Blurred 191 68 61 320
Dead_coral 1980 648 636 3264
Fish 2018 661 642 3321
Homo_sapiens 161 63 58 282
Human_object 156 55 59 270
Living_coral 397 151 153 701
Millepore 386 127 124 637
No_acropore_encrusting 442 141 142 725
No_acropore_foliaceous 204 47 35 286
No_acropore_massive 1030 341 334 1705
No_acropore_solitary 202 55 46 303
No_acropore_sub_massive 1402 428 426 2256
Rock 4481 1495 1481 7457
Rubble 3092 1015 1016 5123
Sand 5839 1945 1935 9719
Sea_cucumber 1407 437 450 2294
Sea_urchins 328 110 107 545
Sponge 267 98 105 470
Syringodium_isoetifolium 1213 392 390 1995
Thalassodendron_ciliatum 781 262 260 1303
Useless 579 193 193 965

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 61.0
  • Learning Rate: 0.001
  • Train Batch Size: 32
  • Eval Batch Size: 32
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss Accuracy F1 Macro F1 Micro Learning Rate
1 0.2007167786359787 0.1609 0.6701 0.4414 0.001
2 0.18952292203903198 0.1825 0.7090 0.5352 0.001
3 0.18667148053646088 0.1763 0.7166 0.5614 0.001
4 0.1814328134059906 0.1798 0.7215 0.5564 0.001
5 0.18154974281787872 0.1923 0.7243 0.5929 0.001
6 0.17931246757507324 0.1962 0.7348 0.5779 0.001
7 0.17549261450767517 0.1997 0.7318 0.5828 0.001
8 0.17576082050800323 0.2059 0.7272 0.5792 0.001
9 0.1740318238735199 0.1937 0.7299 0.5864 0.001
10 0.17477667331695557 0.1874 0.7276 0.5768 0.001
11 0.17347504198551178 0.1979 0.7381 0.6032 0.001
12 0.17222067713737488 0.2112 0.7353 0.5857 0.001
13 0.1720178872346878 0.2161 0.7369 0.5801 0.001
14 0.17544052004814148 0.1923 0.7266 0.5724 0.001
15 0.1705772429704666 0.1986 0.7413 0.5973 0.001
16 0.17385560274124146 0.2059 0.7282 0.6014 0.001
17 0.17162470519542694 0.1997 0.7463 0.6158 0.001
18 0.17156463861465454 0.2042 0.7337 0.5882 0.001
19 0.174124613404274 0.2094 0.7237 0.5876 0.001
20 0.1717967540025711 0.2094 0.7294 0.5808 0.001
21 0.1721898466348648 0.1986 0.7369 0.5918 0.001
22 0.16664884984493256 0.2115 0.7486 0.6174 0.0001
23 0.16572968661785126 0.2059 0.7474 0.6164 0.0001
24 0.16604110598564148 0.2077 0.7473 0.6207 0.0001
25 0.16543170809745789 0.2119 0.7474 0.6136 0.0001
26 0.16543741524219513 0.2098 0.7498 0.6169 0.0001
27 0.1656235158443451 0.2115 0.7497 0.6185 0.0001
28 0.16566258668899536 0.2101 0.7455 0.6091 0.0001
29 0.1653388887643814 0.2077 0.7467 0.6130 0.0001
30 0.16557003557682037 0.2119 0.7484 0.6168 0.0001
31 0.16546830534934998 0.2115 0.7498 0.6121 0.0001
32 0.1653573364019394 0.2073 0.7466 0.6116 0.0001
33 0.16520579159259796 0.2147 0.7470 0.6166 0.0001
34 0.1652197241783142 0.2188 0.7467 0.6174 0.0001
35 0.16497600078582764 0.2115 0.7503 0.6175 0.0001
36 0.16519583761692047 0.2105 0.7479 0.6171 0.0001
37 0.1649632453918457 0.2154 0.7489 0.6121 0.0001
38 0.16533540189266205 0.2164 0.7489 0.6105 0.0001
39 0.16515697538852692 0.2164 0.7506 0.6167 0.0001
40 0.16513320803642273 0.2140 0.7511 0.6164 0.0001
41 0.16498203575611115 0.2129 0.7508 0.6149 0.0001
42 0.16477563977241516 0.2136 0.7512 0.6145 1e-05
43 0.16469572484493256 0.2122 0.7490 0.6136 1e-05
44 0.16464821994304657 0.2126 0.7502 0.6148 1e-05
45 0.16469135880470276 0.2140 0.7512 0.6161 1e-05
46 0.16468331217765808 0.2126 0.7511 0.6148 1e-05
47 0.16469669342041016 0.2136 0.7510 0.6149 1e-05
48 0.16463501751422882 0.2126 0.7500 0.6143 1e-05
49 0.16467586159706116 0.2126 0.7508 0.6153 1e-05
50 0.16459208726882935 0.2126 0.7494 0.6139 1e-05
51 0.1645309180021286 0.2129 0.7498 0.6143 1e-05
52 0.16459544003009796 0.2133 0.7504 0.6142 1e-05
53 0.16463778913021088 0.2122 0.7505 0.6146 1e-05
54 0.16458478569984436 0.2129 0.7504 0.6158 1e-05
55 0.16461443901062012 0.2119 0.7505 0.6153 1e-05
56 0.1645844429731369 0.2115 0.7504 0.6145 1e-05
57 0.16459982097148895 0.2115 0.7501 0.6140 1e-05
58 0.16459773480892181 0.2115 0.7500 0.6138 1.0000000000000002e-06
59 0.164586141705513 0.2126 0.7502 0.6139 1.0000000000000002e-06
60 0.16457903385162354 0.2126 0.7502 0.6139 1.0000000000000002e-06
61 0.1645755171775818 0.2126 0.7505 0.6143 1.0000000000000002e-06

Framework Versions

  • Transformers: 4.56.0.dev0
  • Pytorch: 2.6.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.21.0
Downloads last month
232
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support