--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-large-ojk-channel results: [] --- # xlm-roberta-large-ojk-channel This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4707 - Accuracy: 0.9938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.634 | 1.0 | 80 | 0.4707 | 0.9938 | | 0.5593 | 2.0 | 160 | 0.3474 | 0.9938 | | 0.3272 | 3.0 | 240 | 0.3866 | 0.9938 | | 0.3424 | 4.0 | 320 | 0.2980 | 0.9938 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1