File size: 1,836 Bytes
4ecc197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c2177f
26bd16f
4ecc197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26bd16f
 
 
4ecc197
 
26bd16f
4ecc197
 
4c2177f
26bd16f
4ecc197
 
 
 
 
 
4c2177f
 
 
 
4ecc197
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-ojk-product
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-ojk-product

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2092
- Accuracy: 0.9190

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4484        | 1.0   | 80   | 1.2092          | 0.9190   |
| 1.2845        | 2.0   | 160  | 1.3536          | 0.9190   |
| 1.2898        | 3.0   | 240  | 1.4628          | 0.9190   |
| 1.2482        | 4.0   | 320  | 1.3628          | 0.9190   |


### Framework versions

- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1