hajimeni commited on
Commit
67e55a4
·
verified ·
1 Parent(s): b546039

Add new CrossEncoder model

Browse files
Files changed (8) hide show
  1. README.md +397 -0
  2. config.json +40 -0
  3. merges.txt +0 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +15 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +58 -0
  8. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - generated_from_trainer
8
+ - dataset_size:100000
9
+ - loss:CrossEntropyLoss
10
+ base_model: distilbert/distilroberta-base
11
+ datasets:
12
+ - sentence-transformers/all-nli
13
+ pipeline_tag: text-classification
14
+ library_name: sentence-transformers
15
+ metrics:
16
+ - f1_macro
17
+ - f1_micro
18
+ - f1_weighted
19
+ model-index:
20
+ - name: CrossEncoder based on distilbert/distilroberta-base
21
+ results:
22
+ - task:
23
+ type: cross-encoder-classification
24
+ name: Cross Encoder Classification
25
+ dataset:
26
+ name: AllNLI dev
27
+ type: AllNLI-dev
28
+ metrics:
29
+ - type: f1_macro
30
+ value: 0.8471837177220953
31
+ name: F1 Macro
32
+ - type: f1_micro
33
+ value: 0.848
34
+ name: F1 Micro
35
+ - type: f1_weighted
36
+ value: 0.8471638579236317
37
+ name: F1 Weighted
38
+ - task:
39
+ type: cross-encoder-classification
40
+ name: Cross Encoder Classification
41
+ dataset:
42
+ name: AllNLI test
43
+ type: AllNLI-test
44
+ metrics:
45
+ - type: f1_macro
46
+ value: 0.7672948900569446
47
+ name: F1 Macro
48
+ - type: f1_micro
49
+ value: 0.7678571428571429
50
+ name: F1 Micro
51
+ - type: f1_weighted
52
+ value: 0.7681818441932339
53
+ name: F1 Weighted
54
+ ---
55
+
56
+ # CrossEncoder based on distilbert/distilroberta-base
57
+
58
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** Cross Encoder
64
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
65
+ - **Maximum Sequence Length:** 514 tokens
66
+ - **Number of Output Labels:** 3 labels
67
+ - **Training Dataset:**
68
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
69
+ - **Language:** en
70
+ <!-- - **License:** Unknown -->
71
+
72
+ ### Model Sources
73
+
74
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
75
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
76
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
77
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import CrossEncoder
92
+
93
+ # Download from the 🤗 Hub
94
+ model = CrossEncoder("hajimeni/reranker-distilroberta-base-nli")
95
+ # Get scores for pairs of texts
96
+ pairs = [
97
+ ['Two women are embracing while holding to go packages.', 'The sisters are hugging goodbye while holding to go packages after just eating lunch.'],
98
+ ['Two women are embracing while holding to go packages.', 'Two woman are holding packages.'],
99
+ ['Two women are embracing while holding to go packages.', 'The men are fighting outside a deli.'],
100
+ ['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids in numbered jerseys wash their hands.'],
101
+ ['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids at a ballgame wash their hands.'],
102
+ ]
103
+ scores = model.predict(pairs)
104
+ print(scores.shape)
105
+ # (5, 3)
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ ## Evaluation
133
+
134
+ ### Metrics
135
+
136
+ #### Cross Encoder Classification
137
+
138
+ * Datasets: `AllNLI-dev` and `AllNLI-test`
139
+ * Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator)
140
+
141
+ | Metric | AllNLI-dev | AllNLI-test |
142
+ |:-------------|:-----------|:------------|
143
+ | **f1_macro** | **0.8472** | **0.7673** |
144
+ | f1_micro | 0.848 | 0.7679 |
145
+ | f1_weighted | 0.8472 | 0.7682 |
146
+
147
+ <!--
148
+ ## Bias, Risks and Limitations
149
+
150
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
151
+ -->
152
+
153
+ <!--
154
+ ### Recommendations
155
+
156
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
157
+ -->
158
+
159
+ ## Training Details
160
+
161
+ ### Training Dataset
162
+
163
+ #### all-nli
164
+
165
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
166
+ * Size: 100,000 training samples
167
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
168
+ * Approximate statistics based on the first 1000 samples:
169
+ | | premise | hypothesis | label |
170
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
171
+ | type | string | string | int |
172
+ | details | <ul><li>min: 23 characters</li><li>mean: 69.54 characters</li><li>max: 227 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 38.26 characters</li><li>max: 131 characters</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
173
+ * Samples:
174
+ | premise | hypothesis | label |
175
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
176
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
177
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
178
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
179
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
180
+
181
+ ### Evaluation Dataset
182
+
183
+ #### all-nli
184
+
185
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
186
+ * Size: 1,000 evaluation samples
187
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
188
+ * Approximate statistics based on the first 1000 samples:
189
+ | | premise | hypothesis | label |
190
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
191
+ | type | string | string | int |
192
+ | details | <ul><li>min: 16 characters</li><li>mean: 75.01 characters</li><li>max: 229 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 37.66 characters</li><li>max: 116 characters</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
193
+ * Samples:
194
+ | premise | hypothesis | label |
195
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
196
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
197
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
198
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
199
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `eval_strategy`: steps
205
+ - `per_device_train_batch_size`: 64
206
+ - `per_device_eval_batch_size`: 64
207
+ - `num_train_epochs`: 1
208
+ - `warmup_ratio`: 0.1
209
+ - `bf16`: True
210
+
211
+ #### All Hyperparameters
212
+ <details><summary>Click to expand</summary>
213
+
214
+ - `overwrite_output_dir`: False
215
+ - `do_predict`: False
216
+ - `eval_strategy`: steps
217
+ - `prediction_loss_only`: True
218
+ - `per_device_train_batch_size`: 64
219
+ - `per_device_eval_batch_size`: 64
220
+ - `per_gpu_train_batch_size`: None
221
+ - `per_gpu_eval_batch_size`: None
222
+ - `gradient_accumulation_steps`: 1
223
+ - `eval_accumulation_steps`: None
224
+ - `torch_empty_cache_steps`: None
225
+ - `learning_rate`: 5e-05
226
+ - `weight_decay`: 0.0
227
+ - `adam_beta1`: 0.9
228
+ - `adam_beta2`: 0.999
229
+ - `adam_epsilon`: 1e-08
230
+ - `max_grad_norm`: 1.0
231
+ - `num_train_epochs`: 1
232
+ - `max_steps`: -1
233
+ - `lr_scheduler_type`: linear
234
+ - `lr_scheduler_kwargs`: {}
235
+ - `warmup_ratio`: 0.1
236
+ - `warmup_steps`: 0
237
+ - `log_level`: passive
238
+ - `log_level_replica`: warning
239
+ - `log_on_each_node`: True
240
+ - `logging_nan_inf_filter`: True
241
+ - `save_safetensors`: True
242
+ - `save_on_each_node`: False
243
+ - `save_only_model`: False
244
+ - `restore_callback_states_from_checkpoint`: False
245
+ - `no_cuda`: False
246
+ - `use_cpu`: False
247
+ - `use_mps_device`: False
248
+ - `seed`: 42
249
+ - `data_seed`: None
250
+ - `jit_mode_eval`: False
251
+ - `use_ipex`: False
252
+ - `bf16`: True
253
+ - `fp16`: False
254
+ - `fp16_opt_level`: O1
255
+ - `half_precision_backend`: auto
256
+ - `bf16_full_eval`: False
257
+ - `fp16_full_eval`: False
258
+ - `tf32`: None
259
+ - `local_rank`: 0
260
+ - `ddp_backend`: None
261
+ - `tpu_num_cores`: None
262
+ - `tpu_metrics_debug`: False
263
+ - `debug`: []
264
+ - `dataloader_drop_last`: False
265
+ - `dataloader_num_workers`: 0
266
+ - `dataloader_prefetch_factor`: None
267
+ - `past_index`: -1
268
+ - `disable_tqdm`: False
269
+ - `remove_unused_columns`: True
270
+ - `label_names`: None
271
+ - `load_best_model_at_end`: False
272
+ - `ignore_data_skip`: False
273
+ - `fsdp`: []
274
+ - `fsdp_min_num_params`: 0
275
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
276
+ - `tp_size`: 0
277
+ - `fsdp_transformer_layer_cls_to_wrap`: None
278
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
279
+ - `deepspeed`: None
280
+ - `label_smoothing_factor`: 0.0
281
+ - `optim`: adamw_torch
282
+ - `optim_args`: None
283
+ - `adafactor`: False
284
+ - `group_by_length`: False
285
+ - `length_column_name`: length
286
+ - `ddp_find_unused_parameters`: None
287
+ - `ddp_bucket_cap_mb`: None
288
+ - `ddp_broadcast_buffers`: False
289
+ - `dataloader_pin_memory`: True
290
+ - `dataloader_persistent_workers`: False
291
+ - `skip_memory_metrics`: True
292
+ - `use_legacy_prediction_loop`: False
293
+ - `push_to_hub`: False
294
+ - `resume_from_checkpoint`: None
295
+ - `hub_model_id`: None
296
+ - `hub_strategy`: every_save
297
+ - `hub_private_repo`: None
298
+ - `hub_always_push`: False
299
+ - `gradient_checkpointing`: False
300
+ - `gradient_checkpointing_kwargs`: None
301
+ - `include_inputs_for_metrics`: False
302
+ - `include_for_metrics`: []
303
+ - `eval_do_concat_batches`: True
304
+ - `fp16_backend`: auto
305
+ - `push_to_hub_model_id`: None
306
+ - `push_to_hub_organization`: None
307
+ - `mp_parameters`:
308
+ - `auto_find_batch_size`: False
309
+ - `full_determinism`: False
310
+ - `torchdynamo`: None
311
+ - `ray_scope`: last
312
+ - `ddp_timeout`: 1800
313
+ - `torch_compile`: False
314
+ - `torch_compile_backend`: None
315
+ - `torch_compile_mode`: None
316
+ - `dispatch_batches`: None
317
+ - `split_batches`: None
318
+ - `include_tokens_per_second`: False
319
+ - `include_num_input_tokens_seen`: False
320
+ - `neftune_noise_alpha`: None
321
+ - `optim_target_modules`: None
322
+ - `batch_eval_metrics`: False
323
+ - `eval_on_start`: False
324
+ - `use_liger_kernel`: False
325
+ - `eval_use_gather_object`: False
326
+ - `average_tokens_across_devices`: False
327
+ - `prompts`: None
328
+ - `batch_sampler`: batch_sampler
329
+ - `multi_dataset_batch_sampler`: proportional
330
+
331
+ </details>
332
+
333
+ ### Training Logs
334
+ | Epoch | Step | Training Loss | Validation Loss | AllNLI-dev_f1_macro | AllNLI-test_f1_macro |
335
+ |:------:|:----:|:-------------:|:---------------:|:-------------------:|:--------------------:|
336
+ | -1 | -1 | - | - | 0.1665 | - |
337
+ | 0.0640 | 100 | 1.0595 | - | - | - |
338
+ | 0.1280 | 200 | 0.7 | - | - | - |
339
+ | 0.1919 | 300 | 0.6039 | - | - | - |
340
+ | 0.2559 | 400 | 0.5821 | - | - | - |
341
+ | 0.3199 | 500 | 0.5521 | 0.4509 | 0.8186 | - |
342
+ | 0.3839 | 600 | 0.5148 | - | - | - |
343
+ | 0.4479 | 700 | 0.5334 | - | - | - |
344
+ | 0.5118 | 800 | 0.5125 | - | - | - |
345
+ | 0.5758 | 900 | 0.4893 | - | - | - |
346
+ | 0.6398 | 1000 | 0.503 | 0.3864 | 0.8554 | - |
347
+ | 0.7038 | 1100 | 0.4706 | - | - | - |
348
+ | 0.7678 | 1200 | 0.4635 | - | - | - |
349
+ | 0.8317 | 1300 | 0.44 | - | - | - |
350
+ | 0.8957 | 1400 | 0.459 | - | - | - |
351
+ | 0.9597 | 1500 | 0.4481 | 0.3537 | 0.8472 | - |
352
+ | -1 | -1 | - | - | - | 0.7673 |
353
+
354
+
355
+ ### Framework Versions
356
+ - Python: 3.11.11
357
+ - Sentence Transformers: 4.0.1
358
+ - Transformers: 4.50.2
359
+ - PyTorch: 2.6.0+cu124
360
+ - Accelerate: 1.5.2
361
+ - Datasets: 3.5.0
362
+ - Tokenizers: 0.21.1
363
+
364
+ ## Citation
365
+
366
+ ### BibTeX
367
+
368
+ #### Sentence Transformers
369
+ ```bibtex
370
+ @inproceedings{reimers-2019-sentence-bert,
371
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
372
+ author = "Reimers, Nils and Gurevych, Iryna",
373
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
374
+ month = "11",
375
+ year = "2019",
376
+ publisher = "Association for Computational Linguistics",
377
+ url = "https://arxiv.org/abs/1908.10084",
378
+ }
379
+ ```
380
+
381
+ <!--
382
+ ## Glossary
383
+
384
+ *Clearly define terms in order to be accessible across audiences.*
385
+ -->
386
+
387
+ <!--
388
+ ## Model Card Authors
389
+
390
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
391
+ -->
392
+
393
+ <!--
394
+ ## Model Card Contact
395
+
396
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
397
+ -->
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0",
14
+ "1": "LABEL_1",
15
+ "2": "LABEL_2"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "LABEL_0": 0,
21
+ "LABEL_1": 1,
22
+ "LABEL_2": 2
23
+ },
24
+ "layer_norm_eps": 1e-05,
25
+ "max_position_embeddings": 514,
26
+ "model_type": "roberta",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 6,
29
+ "pad_token_id": 1,
30
+ "position_embedding_type": "absolute",
31
+ "sentence_transformers": {
32
+ "activation_fn": "torch.nn.modules.linear.Identity",
33
+ "version": "4.0.1"
34
+ },
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.50.2",
37
+ "type_vocab_size": 1,
38
+ "use_cache": true,
39
+ "vocab_size": 50265
40
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e31473fe08da75b4fef8ed3c2c3bd3b58849bcaf4f67b87505a6200be26e7ea
3
+ size 328495356
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 514,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff