Upload 2 files
Browse filesadded convert script and test lora
- convert_lora.py +164 -0
- wf_0400.safetensors +3 -0
convert_lora.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from safetensors.torch import load_file, save_file
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict):
|
| 11 |
+
converted_state_dict = {k: diffusers_state_dict.pop(k) for k in list(diffusers_state_dict.keys())}
|
| 12 |
+
|
| 13 |
+
TRANSFORMER_KEYS_RENAME_DICT = {
|
| 14 |
+
"img_in": "x_embedder",
|
| 15 |
+
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
|
| 16 |
+
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
|
| 17 |
+
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
|
| 18 |
+
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
|
| 19 |
+
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
|
| 20 |
+
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
|
| 21 |
+
".double_blocks": ".transformer_blocks",
|
| 22 |
+
".single_blocks": ".single_transformer_blocks",
|
| 23 |
+
"img_attn_q_norm": "attn.norm_q",
|
| 24 |
+
"img_attn_k_norm": "attn.norm_k",
|
| 25 |
+
"img_attn_proj": "attn.to_out.0",
|
| 26 |
+
"txt_attn_q_norm": "attn.norm_added_q",
|
| 27 |
+
"txt_attn_k_norm": "attn.norm_added_k",
|
| 28 |
+
"txt_attn_proj": "attn.to_add_out",
|
| 29 |
+
"img_mod.linear": "norm1.linear",
|
| 30 |
+
"img_norm1": "norm1.norm",
|
| 31 |
+
"img_norm2": "norm2",
|
| 32 |
+
"txt_mlp": "ff_context",
|
| 33 |
+
"img_mlp": "ff",
|
| 34 |
+
"txt_mod.linear": "norm1_context.linear",
|
| 35 |
+
"txt_norm1": "norm1.norm",
|
| 36 |
+
"txt_norm2": "norm2_context",
|
| 37 |
+
"modulation.linear": "norm.linear",
|
| 38 |
+
"pre_norm": "norm.norm",
|
| 39 |
+
"final_layer.norm_final": "norm_out.norm",
|
| 40 |
+
"final_layer.linear": "proj_out",
|
| 41 |
+
# "linear2": "proj_out",
|
| 42 |
+
"fc1": "net.0.proj",
|
| 43 |
+
"fc2": "net.2",
|
| 44 |
+
"input_embedder": "proj_in",
|
| 45 |
+
# txt_in
|
| 46 |
+
"individual_token_refiner.blocks": "token_refiner.refiner_blocks",
|
| 47 |
+
"final_layer.adaLN_modulation.1": "norm_out.linear",
|
| 48 |
+
# "t_embedder.mlp.0": "time_text_embed.timestep_embedder.linear_1",
|
| 49 |
+
# "t_embedder.mlp.2": "time_text_embed.timestep_embedder.linear_2",
|
| 50 |
+
"c_embedder": "time_text_embed.text_embedder",
|
| 51 |
+
"txt_in": "context_embedder",
|
| 52 |
+
# "mlp": "ff",
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
TRANSFORMER_KEYS_RENAME_DICT_REVERSE = {v: k for k, v in TRANSFORMER_KEYS_RENAME_DICT.items()}
|
| 56 |
+
|
| 57 |
+
for key in list(converted_state_dict.keys()):
|
| 58 |
+
if "norm_out.linear" in key:
|
| 59 |
+
weight = converted_state_dict.pop(key)
|
| 60 |
+
scale, shift = weight.chunk(2, dim=0)
|
| 61 |
+
new_weight = torch.cat([shift, scale], dim=0)
|
| 62 |
+
converted_state_dict[key] = new_weight
|
| 63 |
+
|
| 64 |
+
if "to_q" in key:
|
| 65 |
+
if "single_transformer_blocks" in key:
|
| 66 |
+
to_q = converted_state_dict.pop(key)
|
| 67 |
+
to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
|
| 68 |
+
to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
|
| 69 |
+
to_out = converted_state_dict.pop(key.replace("attn.to_q", "proj_mlp"))
|
| 70 |
+
rename_attn_key = "linear1"
|
| 71 |
+
if "lora_A" in key:
|
| 72 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
|
| 73 |
+
else:
|
| 74 |
+
qkv_mlp = torch.cat([to_q, to_k, to_v, to_out], dim=0)
|
| 75 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv_mlp
|
| 76 |
+
else:
|
| 77 |
+
to_q = converted_state_dict.pop(key)
|
| 78 |
+
to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
|
| 79 |
+
to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
|
| 80 |
+
if "token_refiner" in key:
|
| 81 |
+
rename_attn_key = "self_attn_qkv"
|
| 82 |
+
if "lora_A" in key:
|
| 83 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
|
| 84 |
+
else:
|
| 85 |
+
qkv = torch.cat([to_q, to_k, to_v], dim=0)
|
| 86 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
|
| 87 |
+
else:
|
| 88 |
+
rename_attn_key = "img_attn_qkv"
|
| 89 |
+
if "lora_A" in key:
|
| 90 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
|
| 91 |
+
else:
|
| 92 |
+
qkv = torch.cat([to_q, to_k, to_v], dim=0)
|
| 93 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
|
| 94 |
+
|
| 95 |
+
if "add_q_proj" in key:
|
| 96 |
+
to_q = converted_state_dict.pop(key)
|
| 97 |
+
to_k = converted_state_dict.pop(key.replace("add_q_proj", "add_k_proj"))
|
| 98 |
+
to_v = converted_state_dict.pop(key.replace("add_q_proj", "add_v_proj"))
|
| 99 |
+
rename_attn_key = "txt_attn_qkv"
|
| 100 |
+
if "lora_A" in key:
|
| 101 |
+
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = to_q
|
| 102 |
+
else:
|
| 103 |
+
qkv = torch.cat([to_q, to_k, to_v], dim=0)
|
| 104 |
+
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = qkv
|
| 105 |
+
|
| 106 |
+
for key in list(converted_state_dict.keys()):
|
| 107 |
+
new_key = key[:]
|
| 108 |
+
if "token_refiner" in key and "attn.to_out.0" in new_key:
|
| 109 |
+
new_key = new_key.replace("attn.to_out.0", "self_attn_proj")
|
| 110 |
+
if "token_refiner" in key and "ff" in new_key:
|
| 111 |
+
new_key = new_key.replace("ff", "mlp")
|
| 112 |
+
if "token_refiner" in key and "norm_out.linear" in new_key:
|
| 113 |
+
new_key = new_key.replace("norm_out.linear", "adaLN_modulation.1")
|
| 114 |
+
if "context_embedder" in key and "time_text_embed.text_embedder.linear_1" in new_key:
|
| 115 |
+
new_key = new_key.replace("time_text_embed.text_embedder.linear_1", "c_embedder.linear_1")
|
| 116 |
+
if "context_embedder" in key and "time_text_embed.text_embedder.linear_2" in new_key:
|
| 117 |
+
new_key = new_key.replace("time_text_embed.text_embedder.linear_2", "c_embedder.linear_2")
|
| 118 |
+
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_1" in new_key:
|
| 119 |
+
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_1", "t_embedder.mlp.0")
|
| 120 |
+
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_2" in new_key:
|
| 121 |
+
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_2", "t_embedder.mlp.2")
|
| 122 |
+
if "single_transformer_blocks" in key and "proj_out" in new_key:
|
| 123 |
+
new_key = new_key.replace("proj_out", "linear2")
|
| 124 |
+
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT_REVERSE.items():
|
| 125 |
+
new_key = new_key.replace(replace_key, rename_key)
|
| 126 |
+
converted_state_dict[new_key] = converted_state_dict.pop(key)
|
| 127 |
+
|
| 128 |
+
# Remove "transformer." prefix
|
| 129 |
+
for key in list(converted_state_dict.keys()):
|
| 130 |
+
if key.startswith("transformer."):
|
| 131 |
+
converted_state_dict[key[len("transformer."):]] = converted_state_dict.pop(key)
|
| 132 |
+
|
| 133 |
+
# Add back "diffusion_model." prefix
|
| 134 |
+
for key in list(converted_state_dict.keys()):
|
| 135 |
+
converted_state_dict[f"diffusion_model.{key}"] = converted_state_dict.pop(key)
|
| 136 |
+
|
| 137 |
+
return converted_state_dict
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def get_args():
|
| 141 |
+
parser = argparse.ArgumentParser()
|
| 142 |
+
parser.add_argument("--ckpt_path", type=str, required=True)
|
| 143 |
+
parser.add_argument("--output_path_or_name", type=str, required=True)
|
| 144 |
+
return parser.parse_args()
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
args = get_args()
|
| 149 |
+
|
| 150 |
+
if args.ckpt_path.endswith(".pt"):
|
| 151 |
+
diffusers_state_dict = torch.load(args.ckpt_path, map_location="cpu", weights_only=True)
|
| 152 |
+
elif args.ckpt_path.endswith(".safetensors"):
|
| 153 |
+
diffusers_state_dict = load_file(args.ckpt_path)
|
| 154 |
+
|
| 155 |
+
original_format_state_dict = convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict)
|
| 156 |
+
|
| 157 |
+
output_path_or_name = Path(args.output_path_or_name)
|
| 158 |
+
if output_path_or_name.as_posix().endswith(".safetensors"):
|
| 159 |
+
os.makedirs(output_path_or_name.parent, exist_ok=True)
|
| 160 |
+
save_file(original_format_state_dict, output_path_or_name)
|
| 161 |
+
else:
|
| 162 |
+
os.makedirs(output_path_or_name, exist_ok=True)
|
| 163 |
+
output_path_or_name = output_path_or_name / "pytorch_lora_weights.safetensors"
|
| 164 |
+
save_file(original_format_state_dict, output_path_or_name)
|
wf_0400.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:474982b3da41876ed4a28e252b4b58ea69e558f4019accef5c962e9876926a3b
|
| 3 |
+
size 374925440
|