Upload folder using huggingface_hub
Browse files- my_evaluation.py +557 -0
- my_evaluation_tir.sh +25 -0
- run_evaluation.sh +27 -0
- run_script_evaluation.sh +97 -0
my_evaluation.py
ADDED
|
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
TEMPLATE = {
|
| 4 |
+
'orz_tir':
|
| 5 |
+
"""A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. In your reasoning-process, You can use python-code to solve your problem. User: You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your final answer will be extracted automatically by the \\boxed{} tag.\nThis is the problem:{input}\nAssistant: <think>""",
|
| 6 |
+
"orz_tir_xinji": """A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: You can use Python code during the solution process, and the code will be executed immediately and the result will be returned. You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your final answer will be extracted automatically by the \\boxed{} tag.\nThis is the problem:{input}\nAssistant: <think>""",
|
| 7 |
+
"orz_xinji": """A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your final answer will be extracted automatically by the \\boxed{} tag.\nThis is the problem:{input}\nAssistant: <think>""",
|
| 8 |
+
"orz_ch": """A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your final answer will be extracted automatically by the \\boxed{} tag.\nThis is the problem:{input}\nAssistant: <think>""",
|
| 9 |
+
"qwen25-math-cot-tora": """<|im_start|>system\nPlease integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}.<|im_end|>\n<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n""",
|
| 10 |
+
"deepseek_r1_distill": """<|begin▁of▁sentence|>You are Qwen, created by Alibaba Cloud. You are a helpful assistant. You should think step-by-step.<|User|>{input}\nPlease reason step by step, and put your final answer within \\boxed{{}}.<|Assistant|>"""
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
import random
|
| 14 |
+
import os, sys
|
| 15 |
+
from timeout_decorator import timeout
|
| 16 |
+
import argparse
|
| 17 |
+
import time
|
| 18 |
+
from vllm import LLM, SamplingParams
|
| 19 |
+
from datetime import datetime
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
import openai
|
| 23 |
+
import numpy as np
|
| 24 |
+
|
| 25 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 26 |
+
|
| 27 |
+
from latex2sympy2_extended import NormalizationConfig
|
| 28 |
+
from math_verify import LatexExtractionConfig, parse, verify
|
| 29 |
+
import json, os
|
| 30 |
+
import os, sys, uuid
|
| 31 |
+
|
| 32 |
+
ENV_ITER_NUM = int(os.getenv('ENV_ITER_NUM', '2'))
|
| 33 |
+
VLLM_VERSION = os.getenv('VLLM_VERSION', 'vllm_083')
|
| 34 |
+
USE_ID = os.getenv('USE_ID', 'NONE')
|
| 35 |
+
|
| 36 |
+
sys.path.append(os.getenv('OPENRLHF_PATH', '/cpfs/user/chenhao/debug/OpenRLHF_082'))
|
| 37 |
+
# from env.math.math_tir import math_tir_generate
|
| 38 |
+
from env.math.math_tir_process_single_request import math_tir_generate_async
|
| 39 |
+
from openrlhf.async_pipline.process_request import GenerateRequest, default_generate, process_batch_requests
|
| 40 |
+
from passk_eval import estimate_pass_at_k
|
| 41 |
+
from tabulate import tabulate
|
| 42 |
+
import uuid
|
| 43 |
+
|
| 44 |
+
import asyncio
|
| 45 |
+
class AsyncLLM(object):
|
| 46 |
+
def __init__(self, args):
|
| 47 |
+
import vllm
|
| 48 |
+
available_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
|
| 49 |
+
engine_args = vllm.AsyncEngineArgs(
|
| 50 |
+
model=args.model_name_or_path,
|
| 51 |
+
tensor_parallel_size=len(available_gpus) // args.pipeline_parallel_size,
|
| 52 |
+
pipeline_parallel_size=args.pipeline_parallel_size,
|
| 53 |
+
trust_remote_code=True,
|
| 54 |
+
gpu_memory_utilization=0.98,
|
| 55 |
+
dtype="bfloat16",
|
| 56 |
+
disable_log_requests=True,
|
| 57 |
+
seed=args.seed)
|
| 58 |
+
self.llm = vllm.AsyncLLMEngine.from_engine_args(engine_args)
|
| 59 |
+
self.semaphore = asyncio.Semaphore(512) # 实例级共享
|
| 60 |
+
from transformers import AutoTokenizer
|
| 61 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
|
| 62 |
+
self.args = args
|
| 63 |
+
self.batch_size = 4
|
| 64 |
+
|
| 65 |
+
def shutdown(self):
|
| 66 |
+
self.llm.shutdown() # 释放 GPU 内存
|
| 67 |
+
|
| 68 |
+
async def generate_async_server(self, request: GenerateRequest, sampling_params, request_id):
|
| 69 |
+
# Send the request to the LLM engine.
|
| 70 |
+
from vllm.inputs import TokensPrompt
|
| 71 |
+
async with self.semaphore: # 使用共享信号量
|
| 72 |
+
# async with asyncio.Semaphore(MAX_CONCURRENT): # 实例级共享
|
| 73 |
+
# stream = self.llm.generate(
|
| 74 |
+
# request_id=str(request_id),
|
| 75 |
+
# prompt=request.prompts[0],
|
| 76 |
+
# sampling_params=sampling_params,
|
| 77 |
+
# )
|
| 78 |
+
|
| 79 |
+
if USE_ID == 'USE_ID':
|
| 80 |
+
stream = self.llm.generate(
|
| 81 |
+
request_id=str(request_id),
|
| 82 |
+
prompt=TokensPrompt(prompt_token_ids=request.prompt_token_ids),
|
| 83 |
+
# prompt=request.prompts[0],
|
| 84 |
+
sampling_params=sampling_params,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
else:
|
| 88 |
+
stream = self.llm.generate(
|
| 89 |
+
request_id=str(request_id),
|
| 90 |
+
# prompt=TokensPrompt(prompt_token_ids=request.prompt_token_ids),
|
| 91 |
+
prompt=request.prompts[0],
|
| 92 |
+
sampling_params=sampling_params,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Consume the stream until the request is finished.
|
| 96 |
+
# 移入循环内部确保作用域隔离
|
| 97 |
+
final_output = None
|
| 98 |
+
async for request_output in stream:
|
| 99 |
+
final_output = request_output
|
| 100 |
+
if final_output is None:
|
| 101 |
+
raise RuntimeError(f"Empty stream for request_id: {request_id}")
|
| 102 |
+
|
| 103 |
+
assert final_output.request_id == request_id
|
| 104 |
+
output = [{
|
| 105 |
+
'outputs':[
|
| 106 |
+
{
|
| 107 |
+
"text": final_output.outputs[0].text,
|
| 108 |
+
"token_ids": final_output.outputs[0].token_ids,
|
| 109 |
+
"stop_reason": final_output.outputs[0].stop_reason,
|
| 110 |
+
"finish_reason": final_output.outputs[0].finish_reason,
|
| 111 |
+
"log_probs": final_output.outputs[0].logprobs
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
"prompt_token_ids": final_output.prompt_token_ids,
|
| 115 |
+
"request_id": final_output.request_id
|
| 116 |
+
}]
|
| 117 |
+
return output
|
| 118 |
+
|
| 119 |
+
async def async_llm_generate(self, request: GenerateRequest):
|
| 120 |
+
# 实际生成逻辑
|
| 121 |
+
from vllm import SamplingParams
|
| 122 |
+
sampling_params = SamplingParams(
|
| 123 |
+
n=request.n,
|
| 124 |
+
repetition_penalty=1.0,
|
| 125 |
+
temperature=request.temperature,
|
| 126 |
+
top_p=request.top_p,
|
| 127 |
+
top_k=request.top_k,
|
| 128 |
+
min_p=request.min_p,
|
| 129 |
+
max_tokens=request.max_tokens,
|
| 130 |
+
include_stop_str_in_output=request.include_stop_str_in_output,
|
| 131 |
+
stop=request.stop,
|
| 132 |
+
skip_special_tokens=False,
|
| 133 |
+
logprobs=None
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# request_id = str(uuid.uuid4())+request.uuids
|
| 137 |
+
request_id = f"{time.time_ns()}-{uuid.uuid4()}"
|
| 138 |
+
response = await self.generate_async_server(request, sampling_params, request_id)
|
| 139 |
+
return response
|
| 140 |
+
|
| 141 |
+
def build_requests(self, prompts, uuids, sampling_params, infer_type='math_tir_async'):
|
| 142 |
+
request_list = []
|
| 143 |
+
for idx, (prompt, uuid_str) in enumerate(zip(prompts, uuids)):
|
| 144 |
+
request = GenerateRequest(
|
| 145 |
+
prompts=[prompt],
|
| 146 |
+
prompt_token_ids=self.tokenizer(prompt)['input_ids'],
|
| 147 |
+
max_tokens=sampling_params.max_tokens,
|
| 148 |
+
temperature=sampling_params.temperature,
|
| 149 |
+
stop=sampling_params.stop,
|
| 150 |
+
uuids=uuid_str+f'####idx:{idx}',
|
| 151 |
+
env_func=infer_type,
|
| 152 |
+
label=json.dumps({}, ensure_ascii=False),
|
| 153 |
+
request_rank=0,
|
| 154 |
+
max_length=sampling_params.max_tokens+1024,
|
| 155 |
+
enable_vllm_is_correction=False
|
| 156 |
+
)
|
| 157 |
+
request_list.append(request)
|
| 158 |
+
print(len(request_list), '==request_list==')
|
| 159 |
+
return request_list
|
| 160 |
+
|
| 161 |
+
def _create_batches(self, data_list):
|
| 162 |
+
"""将数据分成 batch,返回 [(start_idx, batch), ...]"""
|
| 163 |
+
batches = []
|
| 164 |
+
if isinstance(data_list, list):
|
| 165 |
+
for i in range(0, len(data_list), self.batch_size):
|
| 166 |
+
batch = data_list[i:i + self.batch_size]
|
| 167 |
+
batches.append((i, batch))
|
| 168 |
+
if i + self.batch_size < len(data_list) - 1:
|
| 169 |
+
batches.append((i+1, data_list[i + self.batch_size:]))
|
| 170 |
+
elif isinstance(data_list, dict):
|
| 171 |
+
for env_func in data_list:
|
| 172 |
+
for i in range(0, len(data_list[env_func]), self.batch_size):
|
| 173 |
+
batch = data_list[env_func][i:i + self.batch_size]
|
| 174 |
+
batches.append((i, batch))
|
| 175 |
+
if i + self.batch_size < len(data_list[env_func]) - 1:
|
| 176 |
+
batches.append((i+1, data_list[env_func][i + self.batch_size:]))
|
| 177 |
+
else:
|
| 178 |
+
raise ValueError("data_list must be a list or dict")
|
| 179 |
+
return batches
|
| 180 |
+
|
| 181 |
+
async def batch_generate(self, prompts, uuids, sampling_params):
|
| 182 |
+
request_list = self.build_requests(prompts, uuids, sampling_params)
|
| 183 |
+
batches = self._create_batches(request_list)
|
| 184 |
+
response_tasks = []
|
| 185 |
+
for start_idx, batch in batches:
|
| 186 |
+
env_func = batch[0].env_func
|
| 187 |
+
response_tasks.append(process_batch_requests(self.async_llm_generate, start_idx, batch, env_func=env_func, tokenizer=self.tokenizer, use_reward=False))
|
| 188 |
+
|
| 189 |
+
results_raw = await asyncio.gather(*response_tasks)
|
| 190 |
+
|
| 191 |
+
flat_results = []
|
| 192 |
+
for result_raw in results_raw:
|
| 193 |
+
successful_results, failed_results = result_raw
|
| 194 |
+
for item in successful_results:
|
| 195 |
+
flat_results.append(item)
|
| 196 |
+
responses = [result[1][1] for result in flat_results]
|
| 197 |
+
responses.sort(key=lambda x: int(x.request_id.split('####idx:')[-1]))
|
| 198 |
+
return responses
|
| 199 |
+
|
| 200 |
+
def generate(self, prompts, uuids, sampling_params):
|
| 201 |
+
responses = asyncio.run(self.batch_generate(prompts, uuids, sampling_params))
|
| 202 |
+
return responses
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def seed_everything(seed: int):
|
| 207 |
+
import random, os
|
| 208 |
+
import numpy as np
|
| 209 |
+
import torch
|
| 210 |
+
|
| 211 |
+
random.seed(seed)
|
| 212 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 213 |
+
np.random.seed(seed)
|
| 214 |
+
torch.manual_seed(seed)
|
| 215 |
+
torch.cuda.manual_seed(seed)
|
| 216 |
+
torch.backends.cudnn.deterministic = True
|
| 217 |
+
torch.backends.cudnn.benchmark = True
|
| 218 |
+
|
| 219 |
+
def save_jsonl(samples, save_path):
|
| 220 |
+
# ensure path
|
| 221 |
+
folder = os.path.dirname(save_path)
|
| 222 |
+
os.makedirs(folder, exist_ok=True)
|
| 223 |
+
|
| 224 |
+
with open(save_path, "w", encoding="utf-8") as f:
|
| 225 |
+
for sample in samples:
|
| 226 |
+
f.write(json.dumps(sample, ensure_ascii=False) + "\n")
|
| 227 |
+
print("Saved to", save_path)
|
| 228 |
+
|
| 229 |
+
def evaluation(args, data_name, llm, tokenizer):
|
| 230 |
+
print(f"### being to evaluate {data_name} ###")
|
| 231 |
+
data_list = []
|
| 232 |
+
with open(os.path.join(args.data_dir, data_name, 'test.jsonl')) as frobj:
|
| 233 |
+
for line in tqdm(frobj):
|
| 234 |
+
d = json.loads(line.strip())
|
| 235 |
+
for ans_key in args.answer_key.split(','):
|
| 236 |
+
if ans_key in d:
|
| 237 |
+
d['answer'] = d[ans_key]
|
| 238 |
+
break
|
| 239 |
+
assert 'answer' in d
|
| 240 |
+
data_list.append(d)
|
| 241 |
+
|
| 242 |
+
print(data_list[0].keys())
|
| 243 |
+
|
| 244 |
+
stop_words = ["<|im_end|>", "<|endoftext|>", "</answer>", "</answer>\n"]
|
| 245 |
+
sampling_params = SamplingParams(
|
| 246 |
+
temperature=float(args.temperature),
|
| 247 |
+
top_p=args.top_p,
|
| 248 |
+
top_k=args.top_k,
|
| 249 |
+
max_tokens=args.max_tokens_per_call,
|
| 250 |
+
n=1,
|
| 251 |
+
seed=args.seed,
|
| 252 |
+
stop=stop_words,
|
| 253 |
+
skip_special_tokens=False,
|
| 254 |
+
include_stop_str_in_output=True,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
print('==sampling_params==', sampling_params)
|
| 258 |
+
|
| 259 |
+
input_prompts = []
|
| 260 |
+
for d in data_list:
|
| 261 |
+
for q_key in args.input_key.split(','):
|
| 262 |
+
if q_key in d:
|
| 263 |
+
input_prompts.append(d[q_key])
|
| 264 |
+
break
|
| 265 |
+
|
| 266 |
+
assert len(input_prompts) == len(data_list)
|
| 267 |
+
|
| 268 |
+
# repeat n times
|
| 269 |
+
prompts = [
|
| 270 |
+
TEMPLATE[args.prompt_type].replace('{input}', prompt) for prompt in input_prompts for _ in range(args.n_sampling)
|
| 271 |
+
]
|
| 272 |
+
|
| 273 |
+
prompts_idx = [
|
| 274 |
+
idx for (idx, prompt) in enumerate(input_prompts) for _ in range(args.n_sampling)
|
| 275 |
+
]
|
| 276 |
+
|
| 277 |
+
uuids = []
|
| 278 |
+
for (idx, prompt) in enumerate(input_prompts):
|
| 279 |
+
for _ in range(args.n_sampling):
|
| 280 |
+
uuid_str = str(uuid.uuid4())
|
| 281 |
+
uuids.append(uuid_str)
|
| 282 |
+
|
| 283 |
+
if args.use_vllm:
|
| 284 |
+
outputs = llm.generate(
|
| 285 |
+
prompts,
|
| 286 |
+
sampling_params
|
| 287 |
+
)
|
| 288 |
+
# elif args.use_vllm_tir:
|
| 289 |
+
# outputs = math_tir_generate(llm, sampling_params, None, tokenizer, prompts=prompts)
|
| 290 |
+
|
| 291 |
+
if args.use_vllm_tir and args.use_seperate:
|
| 292 |
+
outputs = llm.generate(prompts, uuids, sampling_params)
|
| 293 |
+
|
| 294 |
+
assert len(outputs) == len(prompts)
|
| 295 |
+
|
| 296 |
+
for idx in range(len(prompts)):
|
| 297 |
+
d_idx = prompts_idx[idx]
|
| 298 |
+
d = data_list[d_idx]
|
| 299 |
+
if 'pred_response' not in d:
|
| 300 |
+
d['pred_response'] = []
|
| 301 |
+
output = outputs[idx]
|
| 302 |
+
d['pred_response'].append(output.outputs[0].text)
|
| 303 |
+
|
| 304 |
+
model_name = "/".join(args.model_name_or_path.split("/")[-2:])
|
| 305 |
+
if args.use_vllm_tir:
|
| 306 |
+
out_file_prefix = f"{args.split}_{args.prompt_type}_{args.num_test_sample}_seed{args.seed}_t{args.temperature}_nsample{args.n_sampling}_enviter{ENV_ITER_NUM}_vllm{VLLM_VERSION}"
|
| 307 |
+
else:
|
| 308 |
+
out_file_prefix = f"{args.split}_{args.prompt_type}_{args.num_test_sample}_seed{args.seed}_t{args.temperature}_nsample{args.n_sampling}_vllm{VLLM_VERSION}"
|
| 309 |
+
output_dir = args.output_dir
|
| 310 |
+
if not os.path.exists(output_dir):
|
| 311 |
+
output_dir = f"outputs/{output_dir}"
|
| 312 |
+
out_file = f"{output_dir}/{data_name}/{out_file_prefix}_s{args.start}_e{args.end}.jsonl"
|
| 313 |
+
os.makedirs(f"{output_dir}/{data_name}", exist_ok=True)
|
| 314 |
+
|
| 315 |
+
# Calculate pass@k.
|
| 316 |
+
total, correct = [], []
|
| 317 |
+
for d in data_list:
|
| 318 |
+
d['pred_score'] = []
|
| 319 |
+
d['pred_answer'] = []
|
| 320 |
+
for resp in d['pred_response']:
|
| 321 |
+
pred_ans = extract_answer(resp)
|
| 322 |
+
if pred_ans:
|
| 323 |
+
d['pred_answer'].append(pred_ans)
|
| 324 |
+
else:
|
| 325 |
+
d['pred_answer'].append('')
|
| 326 |
+
score = answer_grader(str(d['answer']), pred_ans)
|
| 327 |
+
d['pred_score'].append(score)
|
| 328 |
+
|
| 329 |
+
if args.n_sampling > 1:
|
| 330 |
+
# valid_answer = [pred_ans for pred_ans in d['pred_answer'] if pred_ans]
|
| 331 |
+
# d['pred_maj_answer'] = max(set(valid_answer),
|
| 332 |
+
# key=valid_answer.count)
|
| 333 |
+
# d['pred_max_score'] = max(d['pred_score'])
|
| 334 |
+
# d['pred_maj_score'] = answer_grader(str(d['answer']), d['pred_maj_answer'])
|
| 335 |
+
|
| 336 |
+
total.append(len(d['pred_score']))
|
| 337 |
+
correct.append(sum(d['pred_score']))
|
| 338 |
+
|
| 339 |
+
if args.n_sampling > 1:
|
| 340 |
+
|
| 341 |
+
total = np.array(total)
|
| 342 |
+
correct = np.array(correct)
|
| 343 |
+
|
| 344 |
+
ks = [int(args.pass_at_k)]
|
| 345 |
+
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean()
|
| 346 |
+
for k in ks if (total >= k).all()}
|
| 347 |
+
|
| 348 |
+
avg_at_k = {}
|
| 349 |
+
score_at_k = [[] for _ in range(args.n_sampling)]
|
| 350 |
+
for d in data_list:
|
| 351 |
+
assert len(d['pred_score']) == args.n_sampling
|
| 352 |
+
for idx, score in enumerate(d['pred_score']):
|
| 353 |
+
score_at_k[idx].append(score)
|
| 354 |
+
|
| 355 |
+
avg_score = []
|
| 356 |
+
for sampling_idx in range(args.n_sampling):
|
| 357 |
+
score = 100 / len(data_list) * sum(score_at_k[sampling_idx])
|
| 358 |
+
avg_score.append(score)
|
| 359 |
+
pass_at_k[f'avg@{args.n_sampling}'] = sum(avg_score) / args.n_sampling
|
| 360 |
+
|
| 361 |
+
else:
|
| 362 |
+
pass_at_k = {}
|
| 363 |
+
|
| 364 |
+
return data_list, out_file, pass_at_k
|
| 365 |
+
|
| 366 |
+
def extract_answer(pred_str):
|
| 367 |
+
if "boxed" in pred_str:
|
| 368 |
+
ans = pred_str.split("boxed")[-1]
|
| 369 |
+
if len(ans) == 0:
|
| 370 |
+
return ""
|
| 371 |
+
elif ans[0] == "{":
|
| 372 |
+
stack = 1
|
| 373 |
+
a = ""
|
| 374 |
+
for c in ans[1:]:
|
| 375 |
+
if c == "{":
|
| 376 |
+
stack += 1
|
| 377 |
+
a += c
|
| 378 |
+
elif c == "}":
|
| 379 |
+
stack -= 1
|
| 380 |
+
if stack == 0:
|
| 381 |
+
break
|
| 382 |
+
a += c
|
| 383 |
+
else:
|
| 384 |
+
a += c
|
| 385 |
+
else:
|
| 386 |
+
a = ans.split("$")[0].strip()
|
| 387 |
+
pred = a
|
| 388 |
+
return pred
|
| 389 |
+
else:
|
| 390 |
+
return None
|
| 391 |
+
|
| 392 |
+
@timeout(10, use_signals=False)
|
| 393 |
+
def my_verify(gold, pred):
|
| 394 |
+
return float(verify(gold, pred))
|
| 395 |
+
|
| 396 |
+
def answer_grader(gold_ans, pred_ans):
|
| 397 |
+
|
| 398 |
+
if pred_ans is None:
|
| 399 |
+
return 0
|
| 400 |
+
|
| 401 |
+
gold_parsed = parse('\\boxed{'+gold_ans+'}',
|
| 402 |
+
extraction_mode="first_match",
|
| 403 |
+
extraction_config=[LatexExtractionConfig()])
|
| 404 |
+
|
| 405 |
+
pred_parsed = parse(
|
| 406 |
+
"\\boxed{"+pred_ans+"}",
|
| 407 |
+
extraction_config=[
|
| 408 |
+
LatexExtractionConfig(
|
| 409 |
+
normalization_config=NormalizationConfig(
|
| 410 |
+
nits=False,
|
| 411 |
+
malformed_operators=False,
|
| 412 |
+
basic_latex=True,
|
| 413 |
+
equations=True,
|
| 414 |
+
boxed=True,
|
| 415 |
+
units=True,
|
| 416 |
+
),
|
| 417 |
+
# Ensures that boxed is tried first
|
| 418 |
+
boxed_match_priority=0,
|
| 419 |
+
try_extract_without_anchor=False,
|
| 420 |
+
)
|
| 421 |
+
],
|
| 422 |
+
extraction_mode="first_match",
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
if len(gold_parsed) != 0 and len(pred_parsed) != 0:
|
| 426 |
+
try:
|
| 427 |
+
score = my_verify(gold_parsed,
|
| 428 |
+
pred_parsed)
|
| 429 |
+
except Exception as e:
|
| 430 |
+
score = 0
|
| 431 |
+
else:
|
| 432 |
+
score = 0
|
| 433 |
+
|
| 434 |
+
return score
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def evaluation_main(args):
|
| 438 |
+
|
| 439 |
+
available_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
|
| 440 |
+
enforce_eager = os.getenv('ENFORCE_EAGER', 'FALSE')
|
| 441 |
+
|
| 442 |
+
print(available_gpus, '==available_gpus==')
|
| 443 |
+
|
| 444 |
+
if args.use_seperate:
|
| 445 |
+
print('==using async-llm==')
|
| 446 |
+
llm = None
|
| 447 |
+
else:
|
| 448 |
+
llm = LLM(
|
| 449 |
+
model=args.model_name_or_path,
|
| 450 |
+
tensor_parallel_size=len(available_gpus) // args.pipeline_parallel_size,
|
| 451 |
+
pipeline_parallel_size=args.pipeline_parallel_size,
|
| 452 |
+
trust_remote_code=True,gpu_memory_utilization=0.98,
|
| 453 |
+
dtype="bfloat16",
|
| 454 |
+
enforce_eager=True if enforce_eager == 'TRUE' else False,
|
| 455 |
+
seed=args.seed
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 459 |
+
args.model_name_or_path, trust_remote_code=True, use_fast=True
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
avg_score = 0.0
|
| 463 |
+
score_dict = OrderedDict()
|
| 464 |
+
for data_name in args.data_names.split(','):
|
| 465 |
+
score_dict[data_name] = {}
|
| 466 |
+
if args.use_seperate:
|
| 467 |
+
if llm is not None:
|
| 468 |
+
llm.shutdown()
|
| 469 |
+
del llm
|
| 470 |
+
llm = AsyncLLM(args)
|
| 471 |
+
data_list, out_file, pass_at_k = evaluation(args, data_name, llm, tokenizer)
|
| 472 |
+
if args.n_sampling == 1:
|
| 473 |
+
data_score = sum([d['pred_score'][0] for d in data_list])
|
| 474 |
+
final_score = 100 / len(data_list) * data_score
|
| 475 |
+
score_dict[data_name]['final_score'] = final_score
|
| 476 |
+
# else:
|
| 477 |
+
# data_max_score = sum([d['pred_max_score'] for d in data_list])
|
| 478 |
+
# final_max_score = 100 / len(data_list) * data_max_score
|
| 479 |
+
# score_dict[data_name]['final_max_score'] = final_max_score
|
| 480 |
+
|
| 481 |
+
# data_maj_score = sum([d['pred_maj_score'] for d in data_list])
|
| 482 |
+
# final_maj_score = 100 / len(data_list) * data_maj_score
|
| 483 |
+
# score_dict[data_name]['final_maj_score'] = final_maj_score
|
| 484 |
+
|
| 485 |
+
score_dict[data_name].update(pass_at_k)
|
| 486 |
+
|
| 487 |
+
with open(out_file, 'w') as fwobj:
|
| 488 |
+
for d in data_list:
|
| 489 |
+
fwobj.write(json.dumps(d, ensure_ascii=False)+'\n')
|
| 490 |
+
|
| 491 |
+
print(data_name, '===', score_dict[data_name])
|
| 492 |
+
print(data_name, '====', out_file, '==out_file==')
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
data = []
|
| 496 |
+
headers = []
|
| 497 |
+
for name in score_dict:
|
| 498 |
+
item = [name]
|
| 499 |
+
headers = ['dataset']
|
| 500 |
+
for score_key in score_dict[name]:
|
| 501 |
+
item.append(score_dict[name][score_key])
|
| 502 |
+
headers.append(score_key)
|
| 503 |
+
data.append(item)
|
| 504 |
+
|
| 505 |
+
table = tabulate(data, headers=headers, tablefmt="pipe")
|
| 506 |
+
|
| 507 |
+
print(f'### {out_file} evaluation ###')
|
| 508 |
+
print(table)
|
| 509 |
+
|
| 510 |
+
metric_path = out_file.replace(".jsonl", f"_{args.prompt_type}_metrics.json")
|
| 511 |
+
with open(metric_path, "w") as f:
|
| 512 |
+
json.dump({
|
| 513 |
+
'value': score_dict,
|
| 514 |
+
}, f, indent=4)
|
| 515 |
+
print(f'### {metric_path} ###')
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def parse_args():
|
| 520 |
+
parser = argparse.ArgumentParser()
|
| 521 |
+
parser.add_argument("--data_names", default="gsm8k,math", type=str)
|
| 522 |
+
parser.add_argument("--data_dir", default="./data", type=str)
|
| 523 |
+
parser.add_argument("--model_name_or_path", default="gpt-4", type=str)
|
| 524 |
+
parser.add_argument("--output_dir", default="./output", type=str)
|
| 525 |
+
parser.add_argument("--prompt_type", default="tool-integrated", type=str)
|
| 526 |
+
parser.add_argument("--input_key", default="problem,question", type=str)
|
| 527 |
+
parser.add_argument("--answer_key", default="answer,final_answer", type=str)
|
| 528 |
+
parser.add_argument("--split", default="test", type=str)
|
| 529 |
+
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data
|
| 530 |
+
parser.add_argument("--seed", default=0, type=int)
|
| 531 |
+
parser.add_argument("--start", default=0, type=int)
|
| 532 |
+
parser.add_argument("--pass_at_k", default=1, type=int)
|
| 533 |
+
parser.add_argument("--end", default=-1, type=int)
|
| 534 |
+
parser.add_argument("--temperature", default=0, type=float)
|
| 535 |
+
parser.add_argument("--n_sampling", default=1, type=int)
|
| 536 |
+
parser.add_argument("--top_p", default=1, type=float)
|
| 537 |
+
parser.add_argument("--top_k", default=-1, type=int)
|
| 538 |
+
parser.add_argument("--max_tokens_per_call", default=16384, type=int)
|
| 539 |
+
parser.add_argument("--shuffle", action="store_true")
|
| 540 |
+
parser.add_argument("--use_vllm", action="store_true")
|
| 541 |
+
parser.add_argument("--use_vllm_tir", action="store_true")
|
| 542 |
+
parser.add_argument("--use_seperate", action="store_true")
|
| 543 |
+
parser.add_argument("--save_outputs", action="store_true")
|
| 544 |
+
parser.add_argument("--overwrite", action="store_true")
|
| 545 |
+
parser.add_argument("--num_shots", type=int, default=0)
|
| 546 |
+
parser.add_argument("--pipeline_parallel_size", type=int, default=1)
|
| 547 |
+
args = parser.parse_args()
|
| 548 |
+
args.top_p = (
|
| 549 |
+
1 if args.temperature == 0 else args.top_p
|
| 550 |
+
) # top_p must be 1 when using greedy sampling (vllm)
|
| 551 |
+
return args
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
if __name__ == "__main__":
|
| 555 |
+
args = parse_args()
|
| 556 |
+
seed_everything(args.seed)
|
| 557 |
+
evaluation_main(args)
|
my_evaluation_tir.sh
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
set -ex
|
| 2 |
+
|
| 3 |
+
export TOKENIZERS_PARALLELISM=false
|
| 4 |
+
top_p=${TOP_P:-1}
|
| 5 |
+
|
| 6 |
+
echo "TOP_P $top_p"
|
| 7 |
+
|
| 8 |
+
python3 -u my_evaluation.py \
|
| 9 |
+
--model_name_or_path ${MODEL_NAME_OR_PATH} \
|
| 10 |
+
--data_name ${DATA_NAME} \
|
| 11 |
+
--output_dir ${OUTPUT_DIR} \
|
| 12 |
+
--prompt_type ${PROMPT_TYPE} \
|
| 13 |
+
--input_key ${INPUT_KEY} \
|
| 14 |
+
--answer_key ${ANSWER_KEY} \
|
| 15 |
+
--seed 42 \
|
| 16 |
+
--temperature ${TEMPERATURE} \
|
| 17 |
+
--n_sampling ${N_SAMPLING} \
|
| 18 |
+
--top_p ${top_p} \
|
| 19 |
+
--start 0 \
|
| 20 |
+
--end -1 \
|
| 21 |
+
--use_vllm_tir \
|
| 22 |
+
--save_outputs \
|
| 23 |
+
# --use_seperate \
|
| 24 |
+
# --overwrite \
|
| 25 |
+
|
run_evaluation.sh
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
# export step=600
|
| 4 |
+
# export MODEL_NAME_OR_PATH=/cpfs/user/chenhao/outputs/qwen25_7B_reinforce_baseline_zero_tir_fix_boxed_lr1e-6_warmup0.0_kl0.0_zero_tir_0426_nginx_prefetch_fix_env_mask_vllm083_xverify_dapo_async_iternum2/_actor/global_step250/ckpt/pytorch_model.bin/
|
| 5 |
+
# export MODEL_NAME_OR_PATH=/cpfs/user/chenhao/outputs/qwen25_7B_reinforce_baseline_zero_tir_fix_boxed_lr1e-6_warmup0.0_kl0.0_zero_tir_0426_nginx_prefetch_fix_env_mask_vllm083_xverify_deepmath_async_iternum2/_actor/global_step350/ckpt/pytorch_model.bin/
|
| 6 |
+
|
| 7 |
+
# export CUDA_VISIBLE_DEVICES="0"
|
| 8 |
+
# export INPUT_KEY='problem,question'
|
| 9 |
+
# export ANSWER_KEY='answer,final_answer'
|
| 10 |
+
# export PROMPT_TYPE='orz_tir'
|
| 11 |
+
# export DATA_NAME="aime25"
|
| 12 |
+
# export OUTPUT_DIR=${MODEL_NAME_OR_PATH}/math_eval
|
| 13 |
+
# export N_SAMPLING=2
|
| 14 |
+
# export TEMPERATURE=0.0
|
| 15 |
+
# export VLLM_USE_V1=0
|
| 16 |
+
# export USE_TIR='yes'
|
| 17 |
+
# export USE_SEPERATE='no'
|
| 18 |
+
|
| 19 |
+
if [ "$USE_TIR" = "yes" ] && [ "$USE_SEPERATE" = "yes" ]; then
|
| 20 |
+
echo "USING TIR and SEPERATE"
|
| 21 |
+
bash my_evaluation_tir_seperate.sh
|
| 22 |
+
elif [ "$USE_TIR" = "yes" ]; then
|
| 23 |
+
echo "USING TIR"
|
| 24 |
+
bash my_evaluation_tir.sh
|
| 25 |
+
else
|
| 26 |
+
bash my_evaluation.sh
|
| 27 |
+
fi
|
run_script_evaluation.sh
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# apt-get update && \
|
| 2 |
+
# apt-get install -y gosu && \
|
| 3 |
+
# rm -rf /var/lib/apt/lists/*
|
| 4 |
+
|
| 5 |
+
# apt-get update && apt-get -y install sudo
|
| 6 |
+
|
| 7 |
+
echo "Number of GPUS: $N_GPUS"
|
| 8 |
+
echo "Number of process: $NUM_PROCESSES"
|
| 9 |
+
echo "WORLD_SIZE: $WORLD_SIZE"
|
| 10 |
+
echo "RANK: $RANK"
|
| 11 |
+
echo "MASTER_ADDR: $MASTER_ADDR"
|
| 12 |
+
echo "MASTER_PORT: $MASTER_PORT"
|
| 13 |
+
|
| 14 |
+
# export VLLM_PATH=/cpfs/user/chenhao/vllm
|
| 15 |
+
# export PYTHONPATH=$VLLM_PATH:$PYTHONPATH
|
| 16 |
+
|
| 17 |
+
export RANK=${RANK}
|
| 18 |
+
export MY_RANK=2
|
| 19 |
+
export NUM_PROCESSES=$(expr $RANK \* $MY_RANK)
|
| 20 |
+
echo "MY_RANK: $MY_RANK"
|
| 21 |
+
echo "RANK: $RANK"
|
| 22 |
+
echo "NUM_PROCESSES: $NUM_PROCESSES"
|
| 23 |
+
# export VLLM_USE_V1=0
|
| 24 |
+
|
| 25 |
+
# pip3 install deepspeed==0.16.0
|
| 26 |
+
|
| 27 |
+
# cd /cpfs/user/chenhao/debug/
|
| 28 |
+
# cp nccl.conf /etc/nccl.conf
|
| 29 |
+
# echo "COPY nccl.conf to etc"
|
| 30 |
+
# cp parameter_offload.py /usr/local/lib/python3.10/dist-packages/deepspeed/runtime/zero/parameter_offload.py
|
| 31 |
+
# echo "COPY parameter_offload to deepspeed"
|
| 32 |
+
# cp partitioned_param_coordinator.py /usr/local/lib/python3.10/dist-packages/deepspeed/runtime/zero/partitioned_param_coordinator.py
|
| 33 |
+
# echo "COPY partitioned_param_coordinator to deepspeed"
|
| 34 |
+
|
| 35 |
+
pip3 install math-verify tabulate markdown pysbd jsonlines coloredlogs func_timeout timeout-decorator word2number Pebble -i https://mirrors.cloud.aliyuncs.com/pypi/simple --trusted-host mirrors.cloud.aliyuncs.com
|
| 36 |
+
|
| 37 |
+
pip3 install loguru fastapi uvicorn httpx python-multipart aiohttp aiolimiter pysbd jsonlines coloredlogs pebble aiolimiter -i https://mirrors.cloud.aliyuncs.com/pypi/simple --trusted-host mirrors.cloud.aliyuncs.com
|
| 38 |
+
pip3 install func_timeout sentencex requests_futures timeout_decorator flashtext pygments -i https://mirrors.cloud.aliyuncs.com/pypi/simple --trusted-host mirrors.cloud.aliyuncs.com
|
| 39 |
+
|
| 40 |
+
pip3 install math-verify loguru fastapi uvicorn httpx python-multipart aiohttp aiolimiter pysbd jsonlines coloredlogs pebble aiolimiter -i https://mirrors.cloud.aliyuncs.com/pypi/simple --trusted-host mirrors.cloud.aliyuncs.com
|
| 41 |
+
pip3 install func_timeout sentencex requests_futures timeout_decorator flashtext pygments -i https://mirrors.cloud.aliyuncs.com/pypi/simple --trusted-host mirrors.cloud.aliyuncs.com
|
| 42 |
+
|
| 43 |
+
# export ROOT_PATH=/cpfs/user/chenhao/outputs/qwen25_7B_reinforce_baseline_zero_tir_fix_boxed_lr1e-6_warmup0.0_kl0.0_zero_tir_0426_nginx_prefetch_fix_env_mask_vllm083_xverify_dapo_async_iternum2/
|
| 44 |
+
|
| 45 |
+
# export ROOT_PATH=/cpfs/user/chenhao/outputs/qwen25_7B_reinforce_baseline_zero_tir_fix_boxed_lr1e-6_warmup0.0_kl0.0_zero_tir_0502_nginx_prefetch_fix_env_mask_vllm083_xverify_orz_async_pipline_iternum2/
|
| 46 |
+
|
| 47 |
+
# export ROOT_PATH=/cpfs/user/chenhao/outputs/qwen25_7B_reinforce_baseline_zero_tir_fix_boxed_lr1e-6_warmup0.0_kl0.0_zero_tir_0504_nginx_prefetch_fix_env_mask_vllm083_xverify_deepmath_async_pipline_iternum2/
|
| 48 |
+
|
| 49 |
+
export ROOT_PATH=/newcpfs/user/chenhao/outputs/qwen25_32B_reinforce_baseline_zero_tir_lr1e-6_warmup0.0_kl0.0_zero_0812_agent_tir_iternum8_queue_size1_rolloutn16_orz_dapo_seqbalance_raw_adamw_before_select_dualclip_lossmask_dynamicbs_globaltoken_correction_latest/
|
| 50 |
+
|
| 51 |
+
# for step in 250 200 150 100 50
|
| 52 |
+
# do
|
| 53 |
+
# cd ${ROOT_PATH}_actor/
|
| 54 |
+
# mkdir ./global_step${step}/ckpt/
|
| 55 |
+
# rm -r ./global_step${step}/ckpt/
|
| 56 |
+
# python /cpfs/user/chenhao/debug/zero_to_fp32.py . ./global_step${step}/ckpt/pytorch_model.bin -t global_step${step}
|
| 57 |
+
# cp -r /cpfs/user/chenhao/pretrained_models/Qwen/Qwen2.5-7B-local/*.json ./global_step${step}/ckpt/pytorch_model.bin/
|
| 58 |
+
# done
|
| 59 |
+
|
| 60 |
+
cd /cpfs/user/chenhao/Qwen2-Math/evaluation
|
| 61 |
+
# export VLLM_ENABLE_V1_MULTIPROCESSING='0'
|
| 62 |
+
|
| 63 |
+
export NGINX_IP_FILE=/cpfs/user/chenhao/hf_datasets/qwen25_qwq/nginx_conf/nginx_ip.txt
|
| 64 |
+
export COMPILE_SERVER_PORT='10003'
|
| 65 |
+
export MATH_VERIFY_SERVER_PORT='10008'
|
| 66 |
+
export XVERIFY_MATH_MODEL_SERVER_PORT='10005'
|
| 67 |
+
export REMOTE_RM_URL='http://10.39.2.54:10007'
|
| 68 |
+
export OPENRLHF_PATH=/cpfs/user/chenhao/debug/OpenRLHF_082/
|
| 69 |
+
export PRETRAIN=/newcpfs/user/chenhao/pretrained_models/Qwen/Qwen2.5-7B-local/
|
| 70 |
+
|
| 71 |
+
export DEBUG_FLAG='yes'
|
| 72 |
+
export CUDA_VISIBLE_DEVICES="0,1"
|
| 73 |
+
export INPUT_KEY='problem,question'
|
| 74 |
+
export ANSWER_KEY='answer,final_answer'
|
| 75 |
+
export DATA_NAME="aime25,aime24,hmmt_feb_2025,hmmt_feb_2024,cmimc"
|
| 76 |
+
export N_SAMPLING=32
|
| 77 |
+
export TEMPERATURE=1.0
|
| 78 |
+
# export VLLM_USE_V1='0'
|
| 79 |
+
export USE_TIR='yes'
|
| 80 |
+
export TASK_MAX_CONCURRENT=32
|
| 81 |
+
|
| 82 |
+
export VLLM_VERSION='vllm085'
|
| 83 |
+
export USE_SEPERATE='no'
|
| 84 |
+
export USE_ID='USE_ID'
|
| 85 |
+
|
| 86 |
+
for step in 100 150
|
| 87 |
+
do
|
| 88 |
+
for iter in 1 2 4 8 16 18 20
|
| 89 |
+
do
|
| 90 |
+
export ENV_ITER_NUM=${iter}
|
| 91 |
+
export MODEL_NAME_OR_PATH=${ROOT_PATH}global_step${step}_hf_actor/
|
| 92 |
+
export OUTPUT_DIR=${MODEL_NAME_OR_PATH}/math_eval_useid
|
| 93 |
+
export PROMPT_TYPE='orz_tir'
|
| 94 |
+
export USE_SEPERATE='yes'
|
| 95 |
+
bash run_evaluation.sh
|
| 96 |
+
done
|
| 97 |
+
done
|