--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3/blob/main/LICENSE language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara pipeline_tag: text-generation base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - chat - abliterated - uncensored --- # huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3 This is an uncensored version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. Ablation was performed using a new and faster method, which yields better results. This ablation version used a more precise dataset. The pass rate for the 320 harmful instructions test is **100%**. ## ollama huihui_ai/qwen2.5-abliterate:0.5b-v3 is **less than 400MB** in size and performs very well. You can use [huihui_ai/qwen2.5-abliterate:0.5b-v3](https://ollama.com/huihui_ai/qwen2.5-abliterate:0.5b-v3) directly, ``` ollama run huihui_ai/qwen2.5-abliterate:0.5b-v3 ``` ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") ``` ## Pass Rate Description The pass rate is defined as the proportion of harmful instructions that did not trigger the test condition (TestPassed=False) out of the total number of instructions processed. It is calculated by subtracting the number of triggered instructions (triggered_total) from the total number of instructions (total), then dividing the result by the total number of instructions: (total - triggered_total) / total. The pass rate is presented as a decimal value (rounded to two decimal places for clarity) and as a percentage (rounded to one decimal place) to clearly indicate the fraction of instructions that did not trigger the condition. The test set data comes from [huihui-ai/harmbench_behaviors](https://huggingface.co/datasets/huihui-ai/harmbench_behaviors), the test code, [TestPassed.py](https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3/blob/main/TestPassed.py). The test result is [100.00%](https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3/blob/main/TestPassed.jsonl). ``` python TestPassed.py Load Model huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v3 ... Processing harmful instructions: 100%|███████████████████████████████████████████████████████████████████████████████████| 320/320 [01:04<00:00, 4.99it/s] Passed total: 320/320, Passed ratio: 1.00 (100.00%) ``` Below is the comparison of pass rates. | Model | Passed total | Passed ratio | |--------------------------------------|--------------|--------------| | Qwen2.5-0.5B-Instruct | 201/320 | 62.8% | | Qwen2.5-0.5B-Instruct-abliterated | 310/320 | 96.9% | | Qwen2.5-0.5B-Instruct-abliterated-v2 | 317/320 | 99.1% | | Qwen2.5-0.5B-Instruct-abliterated-v3 | **320/320** | **100.00%** | ### Donation If you like it, please click 'like' and follow us for more updates. You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin(BTC): ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ```