Add model card for VGT
Browse filesThis PR adds a comprehensive model card for the VGT (Visual Generation Tuning) model, based on the official paper and GitHub repository.
The updates include:
- A clear description of the model and its capabilities.
- Links to the paper ([Visual Generation Tuning](https://huggingface.co/papers/2511.23469)) and the official GitHub repository ([https://github.com/hustvl/VGT](https://github.com/hustvl/VGT)).
- The `pipeline_tag: text-to-image` metadata for improved discoverability on the Hugging Face Hub, reflecting the model's core functionality.
- Verbatim installation instructions and inference code snippets from the GitHub README to help users get started quickly, ensuring no code is made up.
- Integration of key highlights, a "What is VGT?" summary, a table of pretrained models, and the citation information.
- Visual examples from the GitHub repository.
Please review and merge this PR.
|
@@ -1,3 +1,125 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: text-to-image
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
<div align="center">
|
| 7 |
+
<img src="https://github.com/hustvl/VGT/raw/main/asserts/vgt_logo.png" alt="VGT" width="200">
|
| 8 |
+
<h2>π VGT: Visual Generation Tuning</h2>
|
| 9 |
+
**_Unleashing Visual Generation Capabilities from Any Pretrained VLM_**
|
| 10 |
+
</div>
|
| 11 |
+
|
| 12 |
+
This repository hosts models from the paper [Visual Generation Tuning](https://huggingface.co/papers/2511.23469).
|
| 13 |
+
|
| 14 |
+
**VGT (Visual Generation Tuning)** is a groundbreaking paradigm designed to stimulate the underlying capabilities of visual generation within any pretrained Vision-Language Model (VLM). It significantly mitigates alignment costs and accelerates the convergence of autoregressive modeling in the continuous space, enabling efficient and high-quality image generation from text descriptions.
|
| 15 |
+
|
| 16 |
+
* **Paper**: [Visual Generation Tuning](https://huggingface.co/papers/2511.23469)
|
| 17 |
+
* **Code**: [https://github.com/hustvl/VGT](https://github.com/hustvl/VGT)
|
| 18 |
+
|
| 19 |
+
<div align="center">
|
| 20 |
+
<img src="https://github.com/hustvl/VGT/raw/main/asserts/case_show.png" alt="VGT Generated Images">
|
| 21 |
+
</div>
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## β¨ Highlights
|
| 26 |
+
|
| 27 |
+
- **π― Novel Paradigm**: Transform ANY pretrained Vision-Language Model into a powerful image generator through efficient visual generation tuning
|
| 28 |
+
- **β‘ 20Γ Speedup**: Achieve dramatically faster convergence compared to vanilla VAE-based autoregressive models
|
| 29 |
+
- **π SOTA Performance**: GenEval **0.83** and DPG-Bench **81.28** with minimal training data
|
| 30 |
+
- **π Extreme Data Efficiency**: Reach GenEval 0.55 in just 10K iterations, 0.60 in 30K iterations
|
| 31 |
+
- **π Parallel Inference**: QueryAR mechanism enables 16Γ parallel decoding while maintaining high-quality generation
|
| 32 |
+
- **π¨ Superior Reconstruction**: 26.67 PSNR and 0.50 rFID at 28Γ compression ratio, outperforming specialized VAEs
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## π‘ What is VGT?
|
| 37 |
+
|
| 38 |
+
**VGT (Visual Generation Tuning)** is a groundbreaking paradigm that answers a fundamental question:
|
| 39 |
+
|
| 40 |
+
*Can we directly leverage the well-aligned semantic representations in pretrained VLMs to enable visual generation capabilities?*
|
| 41 |
+
|
| 42 |
+
VGT bridges this gap through two key innovations:
|
| 43 |
+
|
| 44 |
+
**1. VGT-AE (Visual Generation Tuning - AutoEncoder)**
|
| 45 |
+
- Aligns semantic encoders from pretrained VLMs with latent representations of pixel decoders
|
| 46 |
+
- Achieves **26.67 PSNR** and **0.50 rFID** at **28Γ compression**, outperforming specialized VAEs
|
| 47 |
+
|
| 48 |
+
**2. VGT-AR (Visual Generation Tuning - AutoRegressive)**
|
| 49 |
+
- Position-query mechanism for autoregressive formulation with partial parallel decoding
|
| 50 |
+
- Dramatically accelerates convergence (**20Γ speedup**) compared to vanilla VAE-based models
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
## π Getting Started
|
| 55 |
+
|
| 56 |
+
### Installation
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
# Clone the repository
|
| 60 |
+
git clone https://github.com/hustvl/VGT.git
|
| 61 |
+
cd VGT
|
| 62 |
+
|
| 63 |
+
# Install dependencies
|
| 64 |
+
conda create -n vgt python=3.10
|
| 65 |
+
conda activate vgt
|
| 66 |
+
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
|
| 67 |
+
pip install mmengine xtuner tqdm timm
|
| 68 |
+
pip install diffusers transformers==4.57.1
|
| 69 |
+
pip install flash-attn --no-build-isolation
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### Pretrained Models
|
| 73 |
+
|
| 74 |
+
We provide VGT-tuned models based on Qwen2.5-VL and InternVL3 (448px):
|
| 75 |
+
|
| 76 |
+
| Model | Base Model | GenEval | DPG-Bench | Download |
|
| 77 |
+
|:------|:-----------|:-------:|:---------:|:--------:|
|
| 78 |
+
| VGT-InternVL3-1.6B-Pretrain | InternVL3-1.6B | 0.58 | 73.05 | [π€ HuggingFace](https://huggingface.co/hustvl/vgt_internvl3_1_6B_pretrain) |
|
| 79 |
+
| VGT-InternVL3-1.6B-SFT | InternVL3-1.6B | 0.83 | 76.33 | [π€ HuggingFace](https://huggingface.co/hustvl/vgt_internvl3_1_6B_sft) |
|
| 80 |
+
| VGT-Qwen2.5-VL-2B-Pretrain | Qwen2.5-VL-2B | 0.63 | 78.02 | [π€ HuggingFace](https://huggingface.co/hustvl/vgt_qwen25vl_2B_pretrain) |
|
| 81 |
+
| VGT-Qwen2.5-VL-2B-SFT | Qwen2.5-VL-2B | 0.83 | 81.28 | [π€ HuggingFace](https://huggingface.co/hustvl/vgt_qwen25vl_2B_sft) |
|
| 82 |
+
|
| 83 |
+
### Inference
|
| 84 |
+
|
| 85 |
+
Download the sft model checkpoint:
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
cd VGT
|
| 89 |
+
mkdir ckpts
|
| 90 |
+
hf download hustvl/vgt_qwen25vl_2B_sft --repo-type model --local-dir ckpts/hustvl/vgt_qwen25vl_2B_sft
|
| 91 |
+
hf download hustvl/vgt_internvl3_1_6B_sft --repo-type model --local-dir ckpts/hustvl/vgt_internvl3_1_6B_sft
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
Generate images from text prompts:
|
| 95 |
+
|
| 96 |
+
```bash
|
| 97 |
+
export PYTHONPATH=./:$PYTHONPATH
|
| 98 |
+
|
| 99 |
+
# use InternVL3-1.6B generate
|
| 100 |
+
python scripts/sample_text_list_vgt_intervl3_0.6B.py
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
> Note: We found that under the same training method, VGT-Qwen2.5-VL-2B performs better in face generation, while VGT-InternVL3-1.6B performs better in generating landscapes, light and shadow, and animals. You can explore on your own.
|
| 104 |
+
|
| 105 |
+
---
|
| 106 |
+
|
| 107 |
+
## π Citation
|
| 108 |
+
|
| 109 |
+
If you find our work useful, please cite our paper:
|
| 110 |
+
|
| 111 |
+
```bibtex
|
| 112 |
+
@misc{guo2025vgt,
|
| 113 |
+
title={Visual Generation Tuning},
|
| 114 |
+
author={Jiahao Guo and Sinan Du and Jingfeng Yao and Wenyu Liu and Bo Li and Haoxiang Cao and Kun Gai and Chun Yuan and Kai Wu and Xinggang Wang},
|
| 115 |
+
year={2025},
|
| 116 |
+
eprint={2511.23469},
|
| 117 |
+
archivePrefix={arXiv},
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
---
|
| 122 |
+
|
| 123 |
+
## π License
|
| 124 |
+
|
| 125 |
+
This project is released under the MIT License. See [LICENSE](LICENSE) for details.
|