--- license: mit pipeline_tag: text-to-image --- # VGT: Visual Generation Tuning **_Unleashing Visual Generation Capabilities from Any Pretrained VLM_** VGT (Visual Generation Tuning) is a novel paradigm designed to stimulate the underlying capabilities of visual generation within any Vision-Language Model (VLM). By performing efficient visual generation tuning on well-pretrained VLMs, VGT significantly mitigates alignment costs and accelerates the convergence of autoregressive modeling in the continuous space (20x speedup). It aims to transform any pretrained VLM into a powerful image generator, achieving state-of-the-art outcomes in visual generation tasks with dramatically faster convergence and extreme data efficiency. **GenEval 0.83 | DPG-Bench 81.28 | 20× Faster Convergence**
VGT Generated Images
## ✨ Highlights - **🎯 Novel Paradigm**: Transform ANY pretrained Vision-Language Model into a powerful image generator through efficient visual generation tuning. - **⚡ 20× Speedup**: Achieve dramatically faster convergence compared to vanilla VAE-based autoregressive models. - **📊 SOTA Performance**: GenEval **0.83** and DPG-Bench **81.28** with minimal training data. - **🚀 Extreme Data Efficiency**: Reach GenEval 0.55 in just 10K iterations, 0.60 in 30K iterations. - **🔄 Parallel Inference**: QueryAR mechanism enables 16× parallel decoding while maintaining high-quality generation. - **🎨 Superior Reconstruction**: 26.67 PSNR and 0.50 rFID at 28× compression ratio, outperforming specialized VAEs. ## Paper The model was presented in the paper: [**Visual Generation Tuning**](https://huggingface.co/papers/2511.23469) ## Code The official implementation and code are available on the [GitHub repository](https://github.com/hustvl/VGT). ## 🚀 Getting Started ### Installation To get started, clone the repository and install the required dependencies: ```bash # Clone the repository git clone https://github.com/hustvl/VGT.git cd VGT # Install dependencies conda create -n vgt python=3.10 conda activate vgt pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121 pip install mmengine xtuner tqdm timm pip install diffusers transformers==4.57.1 pip install flash-attn --no-build-isolation ``` ### Pretrained Models Pretrained VGT-tuned models based on Qwen2.5-VL and InternVL3 (448px) are available for download: | Model | Base Model | GenEval | DPG-Bench | Download | |:------|:-----------|:-------:|:---------:|:--------:| | VGT-InternVL3-1.6B-Pretrain | InternVL3-1.6B | 0.58 | 73.05 | [🤗 HuggingFace](https://huggingface.co/hustvl/vgt_internvl3_1_6B_pretrain) | | VGT-InternVL3-1.6B-SFT | InternVL3-1.6B | 0.83 | 76.33 | [🤗 HuggingFace](https://huggingface.co/hustvl/vgt_internvl3_1_6B_sft) | | VGT-Qwen2.5-VL-2B-Pretrain | Qwen2.5-VL-2B | 0.63 | 78.02 | [🤗 HuggingFace](https://huggingface.co/hustvl/vgt_qwen25vl_2B_pretrain) | | VGT-Qwen2.5-VL-2B-SFT | Qwen2.5-VL-2B | 0.83 | 81.28 | [🤗 HuggingFace](https://huggingface.co/hustvl/vgt_qwen25vl_2B_sft) | ### Inference (Sample Usage) Download the SFT model checkpoints and generate images from text prompts: ```bash # Ensure you are in the 'VGT' directory cd VGT # Create a directory for checkpoints mkdir -p ckpts/hustvl # Download the sft model checkpoints hf download hustvl/vgt_qwen25vl_2B_sft --repo-type model --local-dir ckpts/hustvl/vgt_qwen25vl_2B_sft hf download hustvl/vgt_internvl3_1_6B_sft --repo-type model --local-dir ckpts/hustvl/vgt_internvl3_1_6B_sft # Set Python path and run the inference script for InternVL3-1.6B export PYTHONPATH=./:$PYTHONPATH python scripts/sample_text_list_vgt_intervl3_0.6B.py ``` *Note: VGT-Qwen2.5-VL-2B performs better in face generation, while VGT-InternVL3-1.6B excels in generating landscapes, light and shadow, and animals. You can explore these differences yourself.* ## 📝 Citation If you find our work useful, please cite our paper: ```bibtex @misc{guo2025vgt, title={Visual Generation Tuning}, author={Jiahao Guo and Sinan Du and Jingfeng Yao and Wenyu Liu and Bo Li and Haoxiang Cao and Kun Gai and Chun Yuan and Kai Wu and Xinggang Wang}, year={2025}, eprint={2511.23469}, archivePrefix={arXiv}, } ``` ## 📄 License This project is released under the MIT License. See the [LICENSE](https://github.com/hustvl/VGT/blob/main/LICENSE) file for details.