Update README.md
Browse files
README.md
CHANGED
|
@@ -36,22 +36,25 @@ By default, we are using Drug+Target cold-split, as provided by tdcommons.
|
|
| 36 |
Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
| 37 |
|
| 38 |
```
|
| 39 |
-
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
| 40 |
```
|
| 41 |
|
| 42 |
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
|
| 43 |
```python
|
| 44 |
import os
|
| 45 |
-
|
| 46 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 47 |
-
from fuse.data.utils.collates import CollateDefault
|
| 48 |
|
| 49 |
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
| 50 |
from mammal.keys import CLS_PRED, SCORES
|
| 51 |
from mammal.model import Mammal
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Load Model
|
| 54 |
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
|
|
|
|
| 55 |
|
| 56 |
# Load Tokenizer
|
| 57 |
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
|
|
@@ -65,11 +68,11 @@ sample_dict = DtiBindingdbKdTask.data_preprocessing(
|
|
| 65 |
drug_sequence_key="drug_seq",
|
| 66 |
norm_y_mean=None,
|
| 67 |
norm_y_std=None,
|
| 68 |
-
device=
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# forward pass - encoder_only mode which supports
|
| 72 |
-
batch_dict =
|
| 73 |
|
| 74 |
# Post-process the model's output
|
| 75 |
batch_dict = DtiBindingdbKdTask.process_model_output(
|
|
@@ -91,7 +94,7 @@ For more advanced usage, see our detailed example at: on `https://github.com/Bio
|
|
| 91 |
|
| 92 |
## Citation
|
| 93 |
|
| 94 |
-
If you found our work useful, please consider
|
| 95 |
```
|
| 96 |
@article{TBD,
|
| 97 |
title={TBD},
|
|
|
|
| 36 |
Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
| 37 |
|
| 38 |
```
|
| 39 |
+
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git#egg=mammal[examples]
|
| 40 |
```
|
| 41 |
|
| 42 |
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
|
| 43 |
```python
|
| 44 |
import os
|
|
|
|
| 45 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
|
|
|
| 46 |
|
| 47 |
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
| 48 |
from mammal.keys import CLS_PRED, SCORES
|
| 49 |
from mammal.model import Mammal
|
| 50 |
|
| 51 |
+
# input
|
| 52 |
+
target_seq = "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC"
|
| 53 |
+
drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
|
| 54 |
+
|
| 55 |
# Load Model
|
| 56 |
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
|
| 57 |
+
model.eval()
|
| 58 |
|
| 59 |
# Load Tokenizer
|
| 60 |
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
|
|
|
|
| 68 |
drug_sequence_key="drug_seq",
|
| 69 |
norm_y_mean=None,
|
| 70 |
norm_y_std=None,
|
| 71 |
+
device=model.device,
|
| 72 |
)
|
| 73 |
|
| 74 |
+
# forward pass - encoder_only mode which supports scalar predictions
|
| 75 |
+
batch_dict = model.forward_encoder_only([sample_dict])
|
| 76 |
|
| 77 |
# Post-process the model's output
|
| 78 |
batch_dict = DtiBindingdbKdTask.process_model_output(
|
|
|
|
| 94 |
|
| 95 |
## Citation
|
| 96 |
|
| 97 |
+
If you found our work useful, please consider giving a star to the repo and cite our paper:
|
| 98 |
```
|
| 99 |
@article{TBD,
|
| 100 |
title={TBD},
|