Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
|
@@ -1,86 +1,98 @@
|
|
| 1 |
-
---
|
| 2 |
-
datasets:
|
| 3 |
-
- id4thomas/emotion-prediction-comet-atomic-2020
|
| 4 |
-
language:
|
| 5 |
-
-
|
| 6 |
-
|
| 7 |
-
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
)
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- id4thomas/emotion-prediction-comet-atomic-2020
|
| 4 |
+
language:
|
| 5 |
+
- zho
|
| 6 |
+
- eng
|
| 7 |
+
- fra
|
| 8 |
+
- spa
|
| 9 |
+
- por
|
| 10 |
+
- deu
|
| 11 |
+
- ita
|
| 12 |
+
- rus
|
| 13 |
+
- jpn
|
| 14 |
+
- kor
|
| 15 |
+
- vie
|
| 16 |
+
- tha
|
| 17 |
+
- ara
|
| 18 |
+
base_model:
|
| 19 |
+
- Qwen/Qwen2.5-3B-Instruct
|
| 20 |
+
---
|
| 21 |
+
# emotion-predictor-Qwen2.5-3B-Instruct
|
| 22 |
+
LLM trained to predict a character's emotional response in the given situation
|
| 23 |
+
* Trained to predict in a structured output format.
|
| 24 |
+
|
| 25 |
+
Prediction Performance:
|
| 26 |
+
| Setting | Performance by Emotion|
|
| 27 |
+
| --- | --- |
|
| 28 |
+
| Pretrained | <img src="./assets/qwen2_5-3b-baseline_perf.png" alt="baseline_perf" width="100%" /> |
|
| 29 |
+
| Tuned | <img src="./assets/finetuned_perf.png" alt="trained_perf" width="100%" /> |
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
## Quickstart
|
| 33 |
+
The model is trained to predict in the following schema
|
| 34 |
+
```
|
| 35 |
+
from enum import Enum
|
| 36 |
+
from pydantic import BaseModel
|
| 37 |
+
|
| 38 |
+
class RelationshipStatus(str, Enum):
|
| 39 |
+
na = "na"
|
| 40 |
+
low = "low"
|
| 41 |
+
medium = "medium"
|
| 42 |
+
high = "high"
|
| 43 |
+
|
| 44 |
+
class EmotionLabel(BaseModel):
|
| 45 |
+
joy: RelationshipStatus
|
| 46 |
+
trust: RelationshipStatus
|
| 47 |
+
fear: RelationshipStatus
|
| 48 |
+
surprise: RelationshipStatus
|
| 49 |
+
sadness: RelationshipStatus
|
| 50 |
+
disgust: RelationshipStatus
|
| 51 |
+
anger: RelationshipStatus
|
| 52 |
+
anticipation: RelationshipStatus
|
| 53 |
+
|
| 54 |
+
class EntryResult(BaseModel):
|
| 55 |
+
emotion: EmotionLabel
|
| 56 |
+
reason: str
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Using `outlines` package to generate structured predictions
|
| 60 |
+
* system prompt & user template is provided [here](./assets/inference_prompt.yaml)
|
| 61 |
+
```
|
| 62 |
+
import outlines
|
| 63 |
+
from outlines import models
|
| 64 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 65 |
+
|
| 66 |
+
model = AutoModelForCausalLM.from_pretrained("id4thomas/emotion-predictor-Qwen2.5-3B-Instruct")
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained("id4thomas/emotion-predictor-Qwen2.5-3B-Instruct")
|
| 68 |
+
|
| 69 |
+
# Initalize outlines generator
|
| 70 |
+
outlines_model = models.Transformers(model, tokenizer)
|
| 71 |
+
generator = outlines.generate.json(outlines_model, EntryResult)
|
| 72 |
+
|
| 73 |
+
# Generate
|
| 74 |
+
messages = [
|
| 75 |
+
{"role": "system", "content": system_message},
|
| 76 |
+
{"role": "user", "content": user_message}
|
| 77 |
+
]
|
| 78 |
+
input_text = tokenizer.apply_chat_template(
|
| 79 |
+
messages,
|
| 80 |
+
tokenize=False,
|
| 81 |
+
add_generation_prompt=True,
|
| 82 |
+
)
|
| 83 |
+
prediction = generator(input_text)
|
| 84 |
+
>>> EntryResult(emotion=EmotionLabel(joy=<RelationshipStatus.na: 'na'>, ...)
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
Using endpoint loaded with vllm & OpenAI client package
|
| 88 |
+
* example of using vllm container is provided [here](./assets/run_vllm.sh)
|
| 89 |
+
```
|
| 90 |
+
client = OpenAI(...)
|
| 91 |
+
json_schema = EntryResult.model_json_schema()
|
| 92 |
+
completion = client.chat.completions.create(
|
| 93 |
+
model="id4thomas/emotion-predictor-Qwen2.5-3B-Instruct",
|
| 94 |
+
messages=messages,
|
| 95 |
+
extra_body={"guided_json": json_schema},
|
| 96 |
+
)
|
| 97 |
+
print(completion.choices[0].message.content)
|
| 98 |
```
|