--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer base_model: openai/whisper-small datasets: - Yettiesoft/voice_medical_cut_small_vector model-index: - name: jazzhong1_medical_whisper_cut_small_1 results: [] --- # jazzhong1_medical_whisper_cut_small_1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the voice_medical_cut_small_vector dataset. It achieves the following results on the evaluation set: - Loss: 0.2648 - Cer: 9.1909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3922 | 0.2346 | 1000 | 0.4451 | 14.6184 | | 0.3506 | 0.4693 | 2000 | 0.3587 | 13.0215 | | 0.3206 | 0.7039 | 3000 | 0.2984 | 10.8546 | | 0.2721 | 0.9385 | 4000 | 0.2648 | 9.1909 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1