from unsloth import PatchDPOTrainer # This line is from the DPO Zephyr example ****** PatchDPOTrainer() from huggingface_hub import HfApi from huggingface_hub import create_repo from unsloth import FastLanguageModel import torch from datasets import load_dataset import random max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. repo_name = "dpo-v1-Nemo" # do wandb stuff import wandb import random wandb.init( project="huggingface", name= repo_name,) model, tokenizer = FastLanguageModel.from_pretrained( model_name = "ijic062/Nemo-v1.1", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = "", # use one if using gated models like meta-llama/Llama-2-7b-hf ) ######################################################################################################## model = FastLanguageModel.get_peft_model( model, r = 64, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state = 3407, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) ######################################################################################################### *** dataset = load_dataset( "Chaser-cz/dpo-nice-prompt" ) train_dataset = dataset['train'].shuffle(seed=random.randint(1, 9999)) # Shuffles data and take a small portion # test_dataset = dataset['test_prefs'] column_names = list(dataset["train"].features) print(f"This is column names: {column_names}") import pprint row = train_dataset[9] pprint.pprint(row["prompt"]) pprint.pprint(row["chosen"]) pprint.pprint(row["rejected"]) ########################################################################################################## from unsloth import PatchDPOTrainer PatchDPOTrainer() from trl import DPOTrainer from transformers import TrainingArguments from unsloth import is_bfloat16_supported dpo_trainer = DPOTrainer( model = model, beta = 0.5, tokenizer = tokenizer, max_length = 1024, max_prompt_length = 512, train_dataset = train_dataset, ref_model = None, # dataset_text_field = "text", # max_seq_length = max_seq_length, # dataset_num_proc = 2, # packing = False, # Can make training 5x faster for short sequences. args = TrainingArguments( # loss_type = "sigmoid", per_device_train_batch_size = 2, gradient_accumulation_steps = 32, gradient_checkpointing= True, warmup_steps = 5, #num_train_epochs = 3, max_steps = 1000, learning_rate = 2.5e-4, fp16 = not is_bfloat16_supported(), bf16 = is_bfloat16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.07, lr_scheduler_type = "cosine", seed = 3407, output_dir = "outputs/dpo-out-13b", save_strategy = "steps", save_steps = 500, ), ) dpo_trainer.train() ########################################################################################################### *** model.save_pretrained_merged("outputs/dpo-out-13b/merged", tokenizer, save_method = "merged_16bit") api = HfApi() create_repo(f"jic062/{repo_name}", repo_type="model",private=True,token="") api.upload_folder( folder_path="outputs/dpo-out-13b/merged", repo_id=f"jic062/{repo_name}", repo_type="model", ) wandb.finish()