|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
import os |
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.utils.checkpoint |
|
|
import transformers |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
from transformers import GenerationConfig |
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.utils import logging |
|
|
from transformers import LlamaForCausalLM, Qwen2ForCausalLM, Qwen3ForCausalLM, Qwen3MoeForCausalLM |
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
|
from .conversation import get_conv_template |
|
|
from .modeling_intern_vit import InternVisionModel, has_flash_attn |
|
|
from .speech_encoder import DualWrappedEncoder |
|
|
from .speech_projector import EncoderProjectorConcat |
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
IGNORE_INDEX = -100 |
|
|
SPEECH_TOKEN_INDEX = -200 |
|
|
DEFAULT_SPEECH_TOKEN = "<speech>" |
|
|
|
|
|
|
|
|
IMAGE_TOKEN_INDEX = -201 |
|
|
|
|
|
|
|
|
def tokenizer_speech_token(prompt, tokenizer, speech_token_index=SPEECH_TOKEN_INDEX, return_tensors=None): |
|
|
"""Tokenize prompt with speech tokens, similar to OLA's implementation""" |
|
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<speech>')] |
|
|
|
|
|
def insert_separator(X, sep): |
|
|
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] |
|
|
|
|
|
input_ids = [] |
|
|
offset = 0 |
|
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
|
offset = 1 |
|
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
|
|
for x in insert_separator(prompt_chunks, [speech_token_index] * (offset + 1)): |
|
|
input_ids.extend(x[offset:]) |
|
|
|
|
|
if return_tensors is not None: |
|
|
if return_tensors == 'pt': |
|
|
return torch.tensor(input_ids, dtype=torch.long) |
|
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
|
return input_ids |
|
|
|
|
|
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
|
import operator |
|
|
|
|
|
from packaging import version |
|
|
op_func = getattr(operator, op) |
|
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_speech_encoder(audio_config): |
|
|
if audio_config.speech_encoder_type is None: |
|
|
return None |
|
|
return DualWrappedEncoder(audio_config) |
|
|
|
|
|
|
|
|
def build_speech_projector(audio_config, llm_hidden_size): |
|
|
|
|
|
fallback_path = getattr(audio_config, 'speech_projector', None) |
|
|
|
|
|
if fallback_path and os.path.exists(fallback_path): |
|
|
print(f"Loading speech projector from fallback path: {fallback_path}") |
|
|
|
|
|
|
|
|
import torch |
|
|
try: |
|
|
state_dict = torch.load(fallback_path, map_location='cpu') |
|
|
|
|
|
|
|
|
speech_projector_state_dict = {} |
|
|
for key, value in state_dict.items(): |
|
|
if key.startswith('model.speech_projector.'): |
|
|
|
|
|
new_key = key.replace('model.speech_projector.', '') |
|
|
speech_projector_state_dict[new_key] = value |
|
|
else: |
|
|
|
|
|
speech_projector_state_dict[key] = value |
|
|
|
|
|
|
|
|
linear1_weight_shape = speech_projector_state_dict.get('linear1.weight', None) |
|
|
if linear1_weight_shape is not None: |
|
|
expected_input_dim = linear1_weight_shape.shape[1] |
|
|
print(f"Detected expected input dimension from weights: {expected_input_dim}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_encoder_dim = 2048 |
|
|
required_ds_rate = expected_input_dim // current_encoder_dim |
|
|
|
|
|
if expected_input_dim == current_encoder_dim * required_ds_rate: |
|
|
print(f"Using ds_rate={required_ds_rate} to match loaded weights") |
|
|
ds_rate = required_ds_rate |
|
|
encoder_hidden_size = current_encoder_dim |
|
|
else: |
|
|
print(f"Warning: Cannot perfectly match dimensions. Expected {expected_input_dim}, current encoder {current_encoder_dim}") |
|
|
print(f"Will use closest match: ds_rate={required_ds_rate}") |
|
|
ds_rate = max(1, required_ds_rate) |
|
|
encoder_hidden_size = current_encoder_dim |
|
|
else: |
|
|
print("Warning: Could not determine input dimensions from weights, using defaults") |
|
|
ds_rate = 5 |
|
|
encoder_hidden_size = 2048 |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Warning: Failed to analyze speech projector weights: {e}") |
|
|
print("Using default dimensions") |
|
|
ds_rate = 5 |
|
|
encoder_hidden_size = 2048 |
|
|
|
|
|
|
|
|
class ConfigWrapper: |
|
|
def __init__(self, llm_hidden_size, ds_rate, encoder_hidden_size): |
|
|
self.speech_encoder_ds_rate = ds_rate |
|
|
self.speech_encoder_hidden_size = encoder_hidden_size |
|
|
self.hidden_size = llm_hidden_size |
|
|
|
|
|
wrapper_config = ConfigWrapper(llm_hidden_size, ds_rate, encoder_hidden_size) |
|
|
projector = EncoderProjectorConcat(wrapper_config) |
|
|
|
|
|
|
|
|
try: |
|
|
projector.load_state_dict(speech_projector_state_dict, strict=False) |
|
|
print(f"Successfully loaded speech projector weights from {fallback_path}") |
|
|
except Exception as e: |
|
|
print(f"Warning: Failed to load speech projector weights: {e}") |
|
|
print("Using randomly initialized speech projector") |
|
|
|
|
|
return projector |
|
|
|
|
|
|
|
|
if audio_config.speech_encoder_type is None: |
|
|
return None |
|
|
|
|
|
class ConfigWrapper: |
|
|
def __init__(self, audio_config, llm_hidden_size): |
|
|
self.speech_encoder_ds_rate = audio_config.speech_encoder_ds_rate |
|
|
self.speech_encoder_hidden_size = audio_config.speech_encoder_hidden_size |
|
|
self.hidden_size = llm_hidden_size |
|
|
|
|
|
wrapper_config = ConfigWrapper(audio_config, llm_hidden_size) |
|
|
return EncoderProjectorConcat(wrapper_config) |
|
|
|
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
|
config_class = InternVLChatConfig |
|
|
main_input_name = 'pixel_values' |
|
|
base_model_prefix = 'language_model' |
|
|
_supports_flash_attn_2 = True |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = [ |
|
|
"InternVisionModel", |
|
|
"Qwen3DecoderLayer", |
|
|
] |
|
|
|
|
|
|
|
|
_tp_plan = '' |
|
|
|
|
|
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): |
|
|
super().__init__(config) |
|
|
|
|
|
assert version_cmp(transformers.__version__, '4.37.0', 'ge') |
|
|
image_size = config.force_image_size or config.vision_config.image_size |
|
|
patch_size = config.vision_config.patch_size |
|
|
self.patch_size = patch_size |
|
|
self.select_layer = config.select_layer |
|
|
self.template = 'plm_v' |
|
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
|
self.downsample_ratio = config.downsample_ratio |
|
|
self.ps_version = config.ps_version |
|
|
use_flash_attn = use_flash_attn if has_flash_attn else False |
|
|
config.vision_config.use_flash_attn = True if use_flash_attn else False |
|
|
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' |
|
|
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
|
logger.info(f'ps_version: {self.ps_version}') |
|
|
if vision_model is not None: |
|
|
self.vision_model = vision_model |
|
|
else: |
|
|
self.vision_model = InternVisionModel(config.vision_config) |
|
|
if language_model is not None: |
|
|
self.language_model = language_model |
|
|
else: |
|
|
architecture: str = config.llm_config.architectures[0] |
|
|
if architecture == 'LlamaForCausalLM': |
|
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
|
elif architecture == 'Qwen2ForCausalLM': |
|
|
self.language_model = Qwen2ForCausalLM(config.llm_config) |
|
|
elif architecture == 'Qwen3MoeForCausalLM': |
|
|
self.language_model = Qwen3MoeForCausalLM(config.llm_config) |
|
|
elif architecture == 'Qwen3ForCausalLM': |
|
|
self.language_model = Qwen3ForCausalLM(config.llm_config) |
|
|
else: |
|
|
raise NotImplementedError(f'{architecture} is not implemented.') |
|
|
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
|
|
self.mlp1 = nn.Sequential( |
|
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(llm_hidden_size, llm_hidden_size) |
|
|
) |
|
|
|
|
|
|
|
|
self.speech_encoder = build_speech_encoder(config.audio_config) |
|
|
self.speech_projector = build_speech_projector(config.audio_config, llm_hidden_size) |
|
|
|
|
|
|
|
|
self.speech_dim_adapter = None |
|
|
if self.speech_projector is not None and hasattr(self.speech_projector, 'encoder_dim'): |
|
|
expected_encoder_dim = self.speech_projector.encoder_dim |
|
|
|
|
|
actual_encoder_dim = 2048 |
|
|
if expected_encoder_dim != actual_encoder_dim: |
|
|
print(f"Adding dimension adapter: {actual_encoder_dim} -> {expected_encoder_dim}") |
|
|
self.speech_dim_adapter = nn.Linear(actual_encoder_dim, expected_encoder_dim) |
|
|
|
|
|
self.img_context_token_id = None |
|
|
self.speech_context_token_id = None |
|
|
self.conv_template = get_conv_template(self.template) |
|
|
self.system_message = self.conv_template.system_message |
|
|
|
|
|
def get_speech_encoder(self): |
|
|
return self.speech_encoder |
|
|
|
|
|
def get_speech_projector(self): |
|
|
return self.speech_projector |
|
|
|
|
|
def encode_speech(self, speech, speech_lengths, speech_wav): |
|
|
"""Encode speech similar to Ola's implementation""" |
|
|
speech_encoder = self.get_speech_encoder() |
|
|
if speech_encoder is None: |
|
|
return None |
|
|
|
|
|
|
|
|
processed_raw_wav = speech_wav |
|
|
if speech_wav is not None and speech_wav.dim() == 2: |
|
|
processed_raw_wav = speech_wav |
|
|
elif speech_wav is not None and isinstance(speech_wav, list): |
|
|
processed_raw_wav = torch.stack(speech_wav, dim=0) |
|
|
|
|
|
|
|
|
try: |
|
|
encoder_outs = speech_encoder(speech.permute(0, 2, 1), raw_wav=processed_raw_wav) |
|
|
except Exception as e: |
|
|
print(f"⚠️ BEATs processing failed: {e}") |
|
|
print("🔄 Falling back to Whisper-only processing") |
|
|
encoder_outs = speech_encoder(speech.permute(0, 2, 1), raw_wav=None) |
|
|
|
|
|
speech_lengths = (speech_lengths + 1) // 2 |
|
|
|
|
|
|
|
|
if self.speech_dim_adapter is not None: |
|
|
encoder_outs = self.speech_dim_adapter(encoder_outs) |
|
|
|
|
|
|
|
|
speech_projector_type = getattr(self.config.audio_config, 'speech_projector_type', 'linear') |
|
|
speech_projector = self.get_speech_projector() |
|
|
if speech_projector_type == "linear" and speech_projector is not None: |
|
|
encoder_outs = speech_projector(encoder_outs) |
|
|
|
|
|
if hasattr(speech_projector, 'k'): |
|
|
speech_lengths = speech_lengths // speech_projector.k |
|
|
elif speech_projector_type != "linear": |
|
|
raise ValueError(f'Unknown speech projector: {speech_projector_type}') |
|
|
|
|
|
return encoder_outs |
|
|
|
|
|
def prepare_inputs_labels_for_speech_vision_text( |
|
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, |
|
|
speech, speech_lengths, speech_chunks, speech_wav, pixel_values, modalities, image_sizes=None, image_flags=None |
|
|
): |
|
|
"""Prepare inputs similar to Ola's implementation""" |
|
|
speech_encoder = self.speech_encoder |
|
|
|
|
|
if speech_encoder is None or input_ids.shape[1] == 1: |
|
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
|
|
|
if speech is not None: |
|
|
if not isinstance(speech, list): |
|
|
if speech_chunks is not None: |
|
|
speech = torch.split(speech, speech_chunks.tolist(), dim=0) |
|
|
speech_lengths = torch.split(speech_lengths, speech_chunks.tolist(), dim=0) |
|
|
speech_wav = torch.split(speech_wav, speech_chunks.tolist(), dim=0) |
|
|
else: |
|
|
speech = [speech] |
|
|
speech_lengths = [speech_lengths] |
|
|
speech_wav = [speech_wav] |
|
|
|
|
|
speech_features = [] |
|
|
for idx in range(len(speech)): |
|
|
speech_feat = self.encode_speech(speech[idx], speech_lengths[idx], speech_wav[idx]) |
|
|
if speech_feat is not None: |
|
|
speech_features.append(speech_feat) |
|
|
else: |
|
|
speech_features = [] |
|
|
|
|
|
|
|
|
if isinstance(modalities, str): |
|
|
modalities = [modalities] |
|
|
|
|
|
image_features = [] |
|
|
if pixel_values is not None: |
|
|
if image_flags is not None: |
|
|
image_flags = image_flags.squeeze(-1) |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
|
|
|
for idx in range(len(modalities)): |
|
|
img_feat = self.mlp1(vit_embeds[idx:idx+1]) |
|
|
image_features.append(img_feat.flatten(0, 1)) |
|
|
else: |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
for idx in range(vit_embeds.shape[0]): |
|
|
img_feat = vit_embeds[idx:idx+1] |
|
|
image_features.append(img_feat.flatten(0, 1)) |
|
|
|
|
|
|
|
|
_labels = labels |
|
|
_position_ids = position_ids |
|
|
_attention_mask = attention_mask |
|
|
|
|
|
if attention_mask is None: |
|
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
|
else: |
|
|
attention_mask = attention_mask.bool() |
|
|
if position_ids is None: |
|
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
|
if labels is None: |
|
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
|
|
new_input_embeds = [] |
|
|
new_labels = [] |
|
|
cur_speech_idx = 0 |
|
|
cur_image_idx = 0 |
|
|
|
|
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
|
num_speech = (cur_input_ids == SPEECH_TOKEN_INDEX).sum() |
|
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
|
num_speech_images = num_images + num_speech |
|
|
|
|
|
if num_speech_images == 0: |
|
|
|
|
|
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids) |
|
|
if len(speech_features) > cur_speech_idx: |
|
|
cur_speech_features = speech_features[cur_speech_idx] |
|
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_speech_features[0:0]], dim=0) |
|
|
else: |
|
|
cur_input_embeds = cur_input_embeds_1 |
|
|
if len(image_features) > cur_image_idx: |
|
|
cur_images_features = image_features[cur_image_idx] |
|
|
cur_input_embeds = torch.cat([cur_input_embeds, cur_images_features[0:0]], dim=0) |
|
|
new_input_embeds.append(cur_input_embeds) |
|
|
new_labels.append(labels[batch_idx]) |
|
|
cur_speech_idx += 1 |
|
|
cur_image_idx += 1 |
|
|
continue |
|
|
|
|
|
|
|
|
speech_image_token_indices = [-1] + torch.where((cur_input_ids == SPEECH_TOKEN_INDEX) | (cur_input_ids == IMAGE_TOKEN_INDEX))[0].tolist() + [cur_input_ids.shape[0]] |
|
|
|
|
|
cur_input_ids_nospeech_image = [] |
|
|
cur_labels = labels[batch_idx] |
|
|
cur_labels_nospeech_image = [] |
|
|
|
|
|
for i in range(len(speech_image_token_indices) - 1): |
|
|
cur_input_ids_nospeech_image.append(cur_input_ids[speech_image_token_indices[i]+1:speech_image_token_indices[i+1]]) |
|
|
cur_labels_nospeech_image.append(cur_labels[speech_image_token_indices[i]+1:speech_image_token_indices[i+1]]) |
|
|
|
|
|
split_sizes = [x.shape[0] for x in cur_labels_nospeech_image] |
|
|
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_nospeech_image)) |
|
|
cur_input_embeds_no_speech_image = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
|
cur_new_input_embeds = [] |
|
|
cur_new_labels = [] |
|
|
|
|
|
|
|
|
speech_idx_in_sequence = 0 |
|
|
image_idx_in_sequence = 0 |
|
|
|
|
|
for i in range(num_speech_images + 1): |
|
|
cur_new_input_embeds.append(cur_input_embeds_no_speech_image[i]) |
|
|
cur_new_labels.append(cur_labels_nospeech_image[i]) |
|
|
|
|
|
if i < num_speech_images: |
|
|
|
|
|
if i < len(speech_image_token_indices) - 1: |
|
|
token_pos = speech_image_token_indices[i + 1] |
|
|
token_type = cur_input_ids[token_pos].item() |
|
|
|
|
|
if token_type == SPEECH_TOKEN_INDEX and len(speech_features) > cur_speech_idx: |
|
|
cur_speech_features = speech_features[cur_speech_idx] |
|
|
cur_speech_idx += 1 |
|
|
cur_new_input_embeds.append(cur_speech_features) |
|
|
cur_new_labels.append(torch.full((cur_speech_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
elif token_type == IMAGE_TOKEN_INDEX and len(image_features) > cur_image_idx: |
|
|
cur_images_features = image_features[cur_image_idx] |
|
|
cur_image_idx += 1 |
|
|
cur_new_input_embeds.append(cur_images_features) |
|
|
cur_new_labels.append(torch.full((cur_images_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
|
|
|
|
|
if num_images == 0 and len(image_features) > cur_image_idx: |
|
|
cur_new_input_embeds = torch.cat([cur_new_input_embeds, image_features[cur_image_idx][0:0]], dim=0) |
|
|
cur_image_idx += 1 |
|
|
|
|
|
if num_speech == 0 and len(speech_features) > cur_speech_idx: |
|
|
cur_new_input_embeds = torch.cat([cur_new_input_embeds, speech_features[cur_speech_idx][0:0]], dim=0) |
|
|
cur_speech_idx += 1 |
|
|
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
|
if tokenizer_model_max_length is not None: |
|
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) if new_input_embeds else 0 |
|
|
batch_size = len(new_input_embeds) |
|
|
|
|
|
if max_len > 0: |
|
|
new_input_embeds_padded = [] |
|
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
|
cur_len = cur_new_embed.shape[0] |
|
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
|
new_input_embeds_padded.append(torch.cat(( |
|
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
|
cur_new_embed |
|
|
), dim=0)) |
|
|
if cur_len > 0: |
|
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
|
attention_mask[i, -cur_len:] = True |
|
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
else: |
|
|
new_input_embeds_padded.append(torch.cat(( |
|
|
cur_new_embed, |
|
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
|
), dim=0)) |
|
|
if cur_len > 0: |
|
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
|
attention_mask[i, :cur_len] = True |
|
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
|
|
if _labels is None: |
|
|
new_labels = None |
|
|
else: |
|
|
new_labels = new_labels_padded |
|
|
|
|
|
if _attention_mask is None: |
|
|
attention_mask = None |
|
|
else: |
|
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
|
|
if _position_ids is None: |
|
|
position_ids = None |
|
|
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
else: |
|
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor = None, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
image_flags: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
|
|
|
speech: Optional[torch.FloatTensor] = None, |
|
|
speech_lengths: Optional[torch.LongTensor] = None, |
|
|
speech_chunks: Optional[torch.LongTensor] = None, |
|
|
speech_wav: Optional[torch.FloatTensor] = None, |
|
|
modalities: Optional[List[str]] = ["image"], |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if speech is not None or (pixel_values is not None and speech_chunks is not None): |
|
|
( |
|
|
input_ids, |
|
|
position_ids, |
|
|
attention_mask, |
|
|
past_key_values, |
|
|
inputs_embeds, |
|
|
labels |
|
|
) = self.prepare_inputs_labels_for_speech_vision_text( |
|
|
input_ids, |
|
|
position_ids, |
|
|
attention_mask, |
|
|
past_key_values, |
|
|
labels, |
|
|
speech, |
|
|
speech_lengths, |
|
|
speech_chunks, |
|
|
speech_wav, |
|
|
pixel_values, |
|
|
modalities, |
|
|
image_sizes=None, |
|
|
image_flags=image_flags |
|
|
) |
|
|
|
|
|
if inputs_embeds is not None: |
|
|
input_embeds = inputs_embeds |
|
|
else: |
|
|
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() |
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
input_ids_flat = input_ids.reshape(B * N) |
|
|
|
|
|
|
|
|
if speech is not None and hasattr(self, 'speech_context_token_id') and self.speech_context_token_id is not None: |
|
|
speech_features = self.encode_speech(speech, speech_lengths, speech_wav) |
|
|
if speech_features is not None: |
|
|
speech_selected = (input_ids_flat == self.speech_context_token_id) |
|
|
if speech_selected.sum() > 0: |
|
|
try: |
|
|
input_embeds[speech_selected] = input_embeds[speech_selected] * 0.0 + speech_features.reshape(-1, C)[:speech_selected.sum()] |
|
|
except Exception as e: |
|
|
print(f'warning: {e}, speech processing fallback') |
|
|
n_token = min(speech_selected.sum(), speech_features.size(0)) |
|
|
input_embeds[speech_selected][:n_token] = input_embeds[speech_selected][:n_token] * 0.0 + speech_features.reshape(-1, C)[:n_token] |
|
|
|
|
|
|
|
|
if pixel_values is not None: |
|
|
image_flags = image_flags.squeeze(-1) |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
|
|
|
selected = (input_ids_flat == self.img_context_token_id) |
|
|
try: |
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
|
except Exception as e: |
|
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' |
|
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
|
n_token = min(selected.sum(), vit_embeds.size(0)) |
|
|
input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token] |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
else: |
|
|
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() |
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
input_ids_flat = input_ids.reshape(B * N) |
|
|
|
|
|
|
|
|
if speech is not None and hasattr(self, 'speech_context_token_id') and self.speech_context_token_id is not None: |
|
|
speech_features = self.encode_speech(speech, speech_lengths, speech_wav) |
|
|
if speech_features is not None: |
|
|
speech_selected = (input_ids_flat == self.speech_context_token_id) |
|
|
if speech_selected.sum() > 0: |
|
|
try: |
|
|
input_embeds[speech_selected] = input_embeds[speech_selected] * 0.0 + speech_features.reshape(-1, C)[:speech_selected.sum()] |
|
|
except Exception as e: |
|
|
print(f'warning: {e}, speech processing fallback') |
|
|
n_token = min(speech_selected.sum(), speech_features.size(0)) |
|
|
input_embeds[speech_selected][:n_token] = input_embeds[speech_selected][:n_token] * 0.0 + speech_features.reshape(-1, C)[:n_token] |
|
|
|
|
|
|
|
|
if pixel_values is not None: |
|
|
image_flags = image_flags.squeeze(-1) |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
|
|
|
selected = (input_ids_flat == self.img_context_token_id) |
|
|
try: |
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
|
except Exception as e: |
|
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' |
|
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
|
n_token = min(selected.sum(), vit_embeds.size(0)) |
|
|
input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token] |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
|
|
outputs = self.language_model( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
logits = outputs.logits |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
|
n, w, h, c = x.size() |
|
|
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
|
int(c / (scale_factor * scale_factor))) |
|
|
if self.ps_version == 'v1': |
|
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
|
'which results in a transposed image.') |
|
|
else: |
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
return x |
|
|
|
|
|
def extract_feature(self, pixel_values): |
|
|
if self.select_layer == -1: |
|
|
vit_embeds = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
output_hidden_states=False, |
|
|
return_dict=True).last_hidden_state |
|
|
else: |
|
|
vit_embeds = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
output_hidden_states=True, |
|
|
return_dict=True).hidden_states[self.select_layer] |
|
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
|
vit_embeds = self.mlp1(vit_embeds) |
|
|
return vit_embeds |
|
|
|
|
|
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, |
|
|
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', |
|
|
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None, |
|
|
speech=None, speech_lengths=None, speech_wav=None, SPEECH_CONTEXT_TOKEN='<SPEECH_CONTEXT>'): |
|
|
if history is not None or return_history: |
|
|
print('Now multi-turn chat is not supported in batch_chat.') |
|
|
raise NotImplementedError |
|
|
|
|
|
if image_counts is not None: |
|
|
num_patches_list = image_counts |
|
|
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') |
|
|
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
|
self.img_context_token_id = img_context_token_id |
|
|
|
|
|
|
|
|
if speech is not None: |
|
|
speech_context_token_id = tokenizer.convert_tokens_to_ids(SPEECH_CONTEXT_TOKEN) |
|
|
self.speech_context_token_id = speech_context_token_id |
|
|
|
|
|
if verbose and pixel_values is not None: |
|
|
image_bs = pixel_values.shape[0] |
|
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
|
|
if verbose and speech is not None: |
|
|
speech_bs = speech.shape[0] |
|
|
print(f'speech batch size: {speech_bs}') |
|
|
|
|
|
queries = [] |
|
|
for idx, num_patches in enumerate(num_patches_list): |
|
|
question = questions[idx] |
|
|
if pixel_values is not None and '<image>' not in question: |
|
|
question = '<image>\n' + question |
|
|
if speech is not None and '<speech>' not in question: |
|
|
question = '<speech>\n' + question |
|
|
|
|
|
template = get_conv_template(self.template) |
|
|
template.system_message = self.system_message |
|
|
template.append_message(template.roles[0], question) |
|
|
template.append_message(template.roles[1], None) |
|
|
query = template.get_prompt() |
|
|
|
|
|
|
|
|
if pixel_values is not None: |
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
|
|
queries.append(query) |
|
|
|
|
|
tokenizer.padding_side = 'left' |
|
|
|
|
|
if speech is not None: |
|
|
input_ids = [] |
|
|
for idx, query in enumerate(queries): |
|
|
if '<speech>' in query: |
|
|
|
|
|
tokens = tokenizer_speech_token(query, tokenizer, return_tensors='pt') |
|
|
else: |
|
|
|
|
|
speech_len = speech_lengths[idx] if speech_lengths is not None else speech.shape[1] |
|
|
num_downsampled_frames = speech_len // self.config.audio_config.speech_encoder_ds_rate |
|
|
num_speech_tokens = num_downsampled_frames + 3 |
|
|
speech_tokens = SPEECH_CONTEXT_TOKEN * num_speech_tokens |
|
|
processed_query = query.replace('<speech>', speech_tokens, 1) |
|
|
tokens = tokenizer(processed_query, return_tensors='pt').input_ids.squeeze(0) |
|
|
input_ids.append(tokens) |
|
|
|
|
|
|
|
|
max_len = max(len(ids) for ids in input_ids) |
|
|
padded_input_ids = [] |
|
|
attention_mask = [] |
|
|
|
|
|
for ids in input_ids: |
|
|
pad_len = max_len - len(ids) |
|
|
if pad_len > 0: |
|
|
padded_ids = torch.cat([torch.full((pad_len,), tokenizer.pad_token_id, dtype=ids.dtype), ids]) |
|
|
mask = torch.cat([torch.zeros(pad_len, dtype=torch.bool), torch.ones(len(ids), dtype=torch.bool)]) |
|
|
else: |
|
|
padded_ids = ids |
|
|
mask = torch.ones(len(ids), dtype=torch.bool) |
|
|
|
|
|
padded_input_ids.append(padded_ids) |
|
|
attention_mask.append(mask) |
|
|
|
|
|
input_ids = torch.stack(padded_input_ids).to(self.device) |
|
|
attention_mask = torch.stack(attention_mask).to(self.device) |
|
|
else: |
|
|
|
|
|
processed_queries = [] |
|
|
for idx, query in enumerate(queries): |
|
|
if speech is not None and '<speech>' in query: |
|
|
speech_len = speech_lengths[idx] if speech_lengths is not None else speech.shape[1] |
|
|
num_downsampled_frames = speech_len // self.config.audio_config.speech_encoder_ds_rate |
|
|
num_speech_tokens = num_downsampled_frames + 3 |
|
|
speech_tokens = SPEECH_CONTEXT_TOKEN * num_speech_tokens |
|
|
query = query.replace('<speech>', speech_tokens, 1) |
|
|
processed_queries.append(query) |
|
|
|
|
|
model_inputs = tokenizer(processed_queries, return_tensors='pt', padding=True) |
|
|
input_ids = model_inputs['input_ids'].to(self.device) |
|
|
attention_mask = model_inputs['attention_mask'].to(self.device) |
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) |
|
|
generation_config['eos_token_id'] = eos_token_id |
|
|
generation_output = self.generate( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
speech=speech, |
|
|
speech_lengths=speech_lengths, |
|
|
speech_chunks=None, |
|
|
speech_wav=speech_wav if speech_wav is not None else speech, |
|
|
modalities=["image"], |
|
|
**generation_config |
|
|
) |
|
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) |
|
|
responses = [response.split(template.sep.strip())[0].strip() for response in responses] |
|
|
return responses |
|
|
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
|
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
|
verbose=False, speech=None, speech_lengths=None, speech_wav=None, SPEECH_CONTEXT_TOKEN='<SPEECH_CONTEXT>'): |
|
|
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
|
question = '<image>\n' + question |
|
|
if history is None and speech is not None and '<speech>' not in question: |
|
|
question = '<speech>\n' + question |
|
|
|
|
|
if num_patches_list is None: |
|
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
|
self.img_context_token_id = img_context_token_id |
|
|
|
|
|
|
|
|
if speech is not None: |
|
|
speech_context_token_id = tokenizer.convert_tokens_to_ids(SPEECH_CONTEXT_TOKEN) |
|
|
self.speech_context_token_id = speech_context_token_id |
|
|
|
|
|
template = get_conv_template(self.template) |
|
|
template.system_message = self.system_message |
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) |
|
|
|
|
|
history = [] if history is None else history |
|
|
for (old_question, old_answer) in history: |
|
|
template.append_message(template.roles[0], old_question) |
|
|
template.append_message(template.roles[1], old_answer) |
|
|
template.append_message(template.roles[0], question) |
|
|
template.append_message(template.roles[1], None) |
|
|
query = template.get_prompt() |
|
|
|
|
|
if verbose and pixel_values is not None: |
|
|
image_bs = pixel_values.shape[0] |
|
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
|
|
if verbose and speech is not None: |
|
|
speech_bs = speech.shape[0] |
|
|
print(f'speech batch size: {speech_bs}') |
|
|
|
|
|
|
|
|
for num_patches in num_patches_list: |
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
|
|
|
|
|
if speech is not None and '<speech>' in query: |
|
|
|
|
|
|
|
|
input_ids = tokenizer_speech_token(query, tokenizer, return_tensors='pt').unsqueeze(0).to(self.device) |
|
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool).to(self.device) |
|
|
else: |
|
|
|
|
|
if speech is not None: |
|
|
speech_len = speech_lengths[0] if speech_lengths is not None else speech.shape[1] |
|
|
|
|
|
num_downsampled_frames = speech_len // self.config.audio_config.speech_encoder_ds_rate |
|
|
|
|
|
num_speech_tokens = num_downsampled_frames + 3 |
|
|
speech_tokens = SPEECH_CONTEXT_TOKEN * num_speech_tokens |
|
|
query = query.replace('<speech>', speech_tokens, 1) |
|
|
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
|
input_ids = model_inputs['input_ids'].to(self.device) |
|
|
attention_mask = model_inputs['attention_mask'].to(self.device) |
|
|
generation_config['eos_token_id'] = eos_token_id |
|
|
generation_output = self.generate( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
speech=speech, |
|
|
speech_lengths=speech_lengths, |
|
|
speech_chunks=None, |
|
|
speech_wav=speech_wav if speech_wav is not None else speech, |
|
|
modalities=["image"], |
|
|
**generation_config |
|
|
) |
|
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
|
response = response.split(template.sep.strip())[0].strip() |
|
|
history.append((question, response)) |
|
|
if return_history: |
|
|
return response, history |
|
|
else: |
|
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
|
if verbose: |
|
|
print(query_to_print, response) |
|
|
return response |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
input_ids: Optional[torch.FloatTensor] = None, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
visual_features: Optional[torch.FloatTensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
speech: Optional[torch.FloatTensor] = None, |
|
|
speech_lengths: Optional[torch.LongTensor] = None, |
|
|
speech_chunks: Optional[torch.LongTensor] = None, |
|
|
speech_wav: Optional[torch.FloatTensor] = None, |
|
|
modalities: Optional[List[str]] = ["image"], |
|
|
**generate_kwargs, |
|
|
) -> torch.LongTensor: |
|
|
|
|
|
|
|
|
if speech is not None or (pixel_values is not None and speech_chunks is not None): |
|
|
( |
|
|
input_ids, |
|
|
position_ids, |
|
|
attention_mask, |
|
|
past_key_values, |
|
|
inputs_embeds, |
|
|
labels |
|
|
) = self.prepare_inputs_labels_for_speech_vision_text( |
|
|
input_ids, |
|
|
None, |
|
|
attention_mask, |
|
|
None, |
|
|
None, |
|
|
speech, |
|
|
speech_lengths, |
|
|
speech_chunks, |
|
|
speech_wav, |
|
|
pixel_values, |
|
|
modalities, |
|
|
image_sizes=None, |
|
|
image_flags=None |
|
|
) |
|
|
|
|
|
if inputs_embeds is not None: |
|
|
input_embeds = inputs_embeds |
|
|
else: |
|
|
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
input_ids_flat = input_ids.reshape(B * N) |
|
|
|
|
|
|
|
|
if speech is not None and hasattr(self, 'speech_context_token_id') and self.speech_context_token_id is not None: |
|
|
speech_features = self.encode_speech(speech, speech_lengths, speech_wav) |
|
|
if speech_features is not None: |
|
|
speech_selected = (input_ids_flat == self.speech_context_token_id) |
|
|
if speech_selected.sum() > 0: |
|
|
input_embeds[speech_selected] = speech_features.reshape(-1, C)[:speech_selected.sum()].to(input_embeds.device) |
|
|
|
|
|
|
|
|
if pixel_values is not None: |
|
|
assert self.img_context_token_id is not None |
|
|
if visual_features is not None: |
|
|
vit_embeds = visual_features |
|
|
else: |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
|
|
|
selected = (input_ids_flat == self.img_context_token_id) |
|
|
assert selected.sum() != 0 |
|
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
else: |
|
|
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
input_ids_flat = input_ids.reshape(B * N) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if pixel_values is not None: |
|
|
assert self.img_context_token_id is not None |
|
|
if visual_features is not None: |
|
|
vit_embeds = visual_features |
|
|
else: |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
|
|
|
selected = (input_ids_flat == self.img_context_token_id) |
|
|
assert selected.sum() != 0 |
|
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
|
|
outputs = self.language_model.generate( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
use_cache=True, |
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
return outputs |
|
|
|
|
|
@property |
|
|
def lm_head(self): |
|
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
return self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def set_output_embeddings(self, value): |
|
|
return self.language_model.set_output_embeddings(value) |
|
|
|