jree423 commited on
Commit
00cd928
·
verified ·
1 Parent(s): 9f07f93

Update README.md with proper YAML metadata

Browse files
Files changed (1) hide show
  1. README.md +46 -2
README.md CHANGED
@@ -1,9 +1,30 @@
1
- # Diffsketcher
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- This is a vector graphics model for generating SVG images from text prompts.
 
 
 
 
 
 
4
 
5
  ## Usage
6
 
 
 
7
  ```python
8
  import requests
9
 
@@ -17,4 +38,27 @@ def query(payload):
17
  output = query({
18
  "prompt": "a beautiful mountain landscape"
19
  })
 
 
 
 
20
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - vector-graphics
6
+ - svg
7
+ - text-to-image
8
+ - diffsketcher
9
+ pipeline_tag: text-to-image
10
+ widget:
11
+ - text: "a beautiful mountain landscape"
12
+ - text: "a colorful sunset over the ocean"
13
+ - text: "a cute cat sitting on a windowsill"
14
+ ---
15
 
16
+ # DiffSketcher - Vector Graphics Model
17
+
18
+ This repository contains the DiffSketcher model for generating vector graphics (SVG) from text prompts.
19
+
20
+ ## Model Description
21
+
22
+ DiffSketcher is a diffusion-based vector graphics generation model that creates high-quality SVG images from text descriptions. The model uses a combination of diffusion models and vector optimization techniques to produce clean, scalable vector graphics.
23
 
24
  ## Usage
25
 
26
+ You can use this model through the Hugging Face Inference API:
27
+
28
  ```python
29
  import requests
30
 
 
38
  output = query({
39
  "prompt": "a beautiful mountain landscape"
40
  })
41
+
42
+ # Save the SVG output
43
+ with open("output.svg", "w") as f:
44
+ f.write(output["svg"])
45
  ```
46
+
47
+ ## Limitations
48
+
49
+ - The model may take some time to generate complex images
50
+ - The quality of the output depends on the clarity and specificity of the prompt
51
+ - Some complex concepts may not be rendered accurately
52
+
53
+ ## Citation
54
+
55
+ If you use this model in your research, please cite the original DiffSketcher paper:
56
+
57
+ ```bibtex
58
+ @inproceedings{xing2023diffsketcher,
59
+ title={DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models},
60
+ author={Ximing Xing and Chuang Wang and Haitao Zhou and Jing Zhang and Qian Yu and Dong Xu},
61
+ booktitle={Advances in Neural Information Processing Systems},
62
+ year={2023}
63
+ }
64
+ ```