--- language: - en license: mit library_name: diffvg tags: - vector-graphics - svg - text-to-image - diffusion - stable-diffusion pipeline_tag: text-to-image inference: true --- # DiffSketcher **Text-guided vector graphics synthesis** ## Model Description DiffSketcher is a vector graphics model that converts text descriptions into scalable vector graphics (SVG). It was developed based on the research from the [original repository](https://github.com/ximinng/DiffSketcher) and adapted for the Hugging Face ecosystem. ## How to Use You can use this model through the Hugging Face Inference API: ```python import requests import base64 from PIL import Image import io API_URL = "https://api-inference.huggingface.co/models/jree423/diffsketcher" headers = {"Authorization": "Bearer YOUR_API_TOKEN"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() # Example payload = {"prompt": "a house with a chimney"} output = query(payload) # Save SVG with open("output.svg", "w") as f: f.write(output["svg"]) # Save image image_data = base64.b64decode(output["image"]) image = Image.open(io.BytesIO(image_data)) image.save("output.png") ``` ## Model Parameters * `prompt` (string, required): Text description of the desired output * `negative_prompt` (string, optional): Text to avoid in the generation * `num_paths` (integer, optional): Number of paths in the SVG * `guidance_scale` (float, optional): Guidance scale for the diffusion model * `seed` (integer, optional): Random seed for reproducibility ## Limitations * The model works best with descriptive, clear prompts * Complex scenes may not be rendered with perfect accuracy * Generation time can vary based on the complexity of the prompt