--- license: mit tags: - text-to-image - svg - vector-graphics pipeline_tag: text-to-image widget: - text: "a beautiful mountain landscape" example_title: "Mountain Landscape" - text: "a cute cat sitting on a windowsill" example_title: "Cat on Windowsill" - text: "a futuristic city skyline at sunset" example_title: "Futuristic City" --- # Vector Graphics Model This model generates vector graphics (SVG) from text prompts. ## Usage ```python import requests API_URL = "https://api-inference.huggingface.co/models/jree423/diffsketcher" headers = {"Authorization": "Bearer YOUR_API_TOKEN"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() # Text-to-image input output = query({ "inputs": "a beautiful mountain landscape", }) # The response contains: # - svg: The SVG content as a string # - svg_base64: The SVG content encoded as base64 # - png_base64: A PNG version of the SVG encoded as base64 ``` ## Model Details This model generates vector graphics (SVG) from text prompts. It produces clean, scalable vector graphics that can be used in various applications. ## Limitations This is a placeholder implementation that returns simple SVG graphics. The full model implementation will be added in the future.