File size: 3,149 Bytes
7e56761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
{
"model_name": "rf-detr-soccernet",
"architecture": "RF-DETR-Large",
"task": "object-detection",
"domain": "sports-analytics",
"dataset": "SoccerNet-Tracking-2023",
"model_info": {
"parameters": 128000000,
"parameter_count": "128M",
"architecture_details": "RF-DETR-Large with DINOv2 backbone",
"input_size": [1280, 1280],
"input_channels": 3,
"output_format": "bounding_boxes_with_classes"
},
"classes": {
"num_classes": 4,
"class_names": ["ball", "player", "referee", "goalkeeper"],
"class_mapping": {
"0": "ball",
"1": "player",
"2": "referee",
"3": "goalkeeper"
},
"class_colors": {
"ball": [255, 0, 0],
"player": [0, 255, 0],
"referee": [255, 255, 0],
"goalkeeper": [0, 255, 255]
}
},
"performance": {
"mAP": 0.498,
"mAP@50": 0.857,
"mAP@75": 0.520,
"target_achieved": true,
"target_mAP@50": 0.8495,
"evaluation_dataset": "SoccerNet-Tracking-2023-test",
"evaluation_images": 9000
},
"training_info": {
"epochs_completed": 4,
"total_training_time_hours": 14,
"dataset_size": 42750,
"validation_size": 9000,
"batch_size": 4,
"learning_rate": 0.0001,
"optimizer": "AdamW",
"scheduler": "cosine_annealing",
"hardware": "NVIDIA A100 40GB",
"training_framework": "PyTorch",
"mixed_precision": true
},
"preprocessing": {
"normalization": "ImageNet",
"augmentation": [
"random_scaling",
"random_rotation",
"color_jittering",
"horizontal_flip"
],
"input_resolution": 1280,
"multi_scale_training": true,
"scale_range": [896, 1280]
},
"inference": {
"default_confidence_threshold": 0.5,
"recommended_thresholds": {
"ball": 0.4,
"player": 0.5,
"referee": 0.6,
"goalkeeper": 0.5
},
"processing_speed_fps": {
"RTX_4070": 15,
"A100": 30,
"CPU": 3
},
"memory_requirements": {
"model_size_gb": 1.46,
"gpu_memory_gb": 6,
"ram_gb": 4
}
},
"use_cases": [
"sports_analytics",
"player_tracking",
"ball_possession_analysis",
"formation_analysis",
"broadcast_enhancement",
"tactical_research",
"video_analytics",
"automated_highlights"
],
"limitations": [
"optimized_for_broadcast_footage",
"standard_camera_angles_preferred",
"lighting_sensitivity",
"small_ball_occlusion_challenges"
],
"file_info": {
"checkpoint_filename": "checkpoint_best_regular.pth",
"checkpoint_size_mb": 1495,
"created_date": "2025-07-29",
"version": "1.0.0",
"huggingface_compatible": true,
"git_lfs_required": true
},
"citation": {
"title": "RF-DETR SoccerNet: High-Performance Soccer Object Detection",
"authors": ["Computer Vision Research Team"],
"year": 2025,
"publisher": "Hugging Face",
"license": "Apache-2.0"
},
"contact": {
"repository": "huggingface.co/YOUR-USERNAME/rf-detr-soccernet",
"issues": "github.com/YOUR-USERNAME/rf-detr-soccernet/issues",
"documentation": "README.md"
}
} |