Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,106 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
license: mit
|
| 5 |
+
base_model:
|
| 6 |
+
- mistralai/Mistral-7B-v0.1
|
| 7 |
+
datasets:
|
| 8 |
+
- argilla/distilabel-capybara-dpo-7k-binarized
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
+
model-index:
|
| 11 |
+
- name: Mistral-ORPO-Capybara-7k
|
| 12 |
+
results:
|
| 13 |
+
- task:
|
| 14 |
+
type: text-generation
|
| 15 |
+
dataset:
|
| 16 |
+
name: AlpacaEval 2 (LC)
|
| 17 |
+
type: AlpacaEval
|
| 18 |
+
metrics:
|
| 19 |
+
- type: AlpacaEval 2.0
|
| 20 |
+
value: 15.88%
|
| 21 |
+
name: Win Rate
|
| 22 |
+
source:
|
| 23 |
+
url: https://tatsu-lab.github.io/alpaca_eval/
|
| 24 |
+
name: self-reported
|
| 25 |
+
- task:
|
| 26 |
+
type: text-generation
|
| 27 |
+
dataset:
|
| 28 |
+
name: MT-Bench
|
| 29 |
+
type: MT-Bench
|
| 30 |
+
metrics:
|
| 31 |
+
- type: MT-Bench
|
| 32 |
+
value: 7.444
|
| 33 |
+
name: Score
|
| 34 |
+
source:
|
| 35 |
+
url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
|
| 36 |
+
name: self-reported
|
| 37 |
---
|
| 38 |
+
# **Mistral-ORPO-Capybara-7k (7B)**
|
| 39 |
+
|
| 40 |
+
**Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *[odds ratio preference optimization (ORPO)](https://arxiv.org/abs/2403.07691)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase.
|
| 41 |
+
|
| 42 |
+
**Mistral-ORPO-ORPO-Capybara-7k** is fine-tuned for **2.5 hours on four A100s** exclusively on the **7k** instances of the distilled Capybara paired multi-turn conversation dataset, [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized), by [Argilla](https://huggingface.co/argilla).
|
| 43 |
+
|
| 44 |
+
- **Github Repository**: https://github.com/xfactlab/orpo
|
| 45 |
+
|
| 46 |
+
## 👍 **Model Performance**
|
| 47 |
+
|
| 48 |
+
### 1) AlpacaEval & MT-Bench
|
| 49 |
+
|
| 50 |
+
|Model Name|Size|Align|MT-Bench|AlpacaEval 2.0 (LC)|
|
| 51 |
+
|:--------|:--------------:|:-------------------:|:------------:|:------------:|
|
| 52 |
+
|**Mistral-<tt>ORPO</tt>-Capybara-7k**|7B|<tt>ORPO</tt>|7.44|15.9|
|
| 53 |
+
|**Mistral-<tt>ORPO</tt>-β**|7B|<tt>ORPO</tt>|7.32|14.7|
|
| 54 |
+
|Zephyr β |7B|DPO|7.34|13.2|
|
| 55 |
+
|TULU-2-DPO |13B|DPO|7.00|11.6|
|
| 56 |
+
|Llama-2-Chat |7B|RLHF|6.27|5.4|
|
| 57 |
+
|Llama-2-Chat |13B|RLHF|6.65|8.4|
|
| 58 |
+
|
| 59 |
+
### 2) IFEval
|
| 60 |
+
|
| 61 |
+
| **Model Type** | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** |
|
| 62 |
+
|--------------------|:-----------------:|:----------------:|:---------------:|:--------------:|
|
| 63 |
+
| **Mistral-ORPO-Capybara-7k** | 0.5083 | 0.5083 | 0.5827 | 0.6127 |
|
| 64 |
+
| **Mistral-ORPO-⍺** | 0.5009 | 0.5083 | 0.5995 | 0.6163 |
|
| 65 |
+
| **Mistral-ORPO-β** | 0.5287 | 0.5564 | 0.6355 | 0.6619 |
|
| 66 |
+
|
| 67 |
+
## 🗺️ **MT-Bench by Category**
|
| 68 |
+
|
| 69 |
+

|
| 70 |
+
|
| 71 |
+
## 🖥️ **Inference**
|
| 72 |
+
|
| 73 |
+
```python
|
| 74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 75 |
+
model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-capybara-7k")
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-capybara-7k")
|
| 77 |
+
# Apply chat template
|
| 78 |
+
query = [{'role': 'user', 'content': 'Hi! How are you doing?'}]
|
| 79 |
+
prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True)
|
| 80 |
+
inputs = tokenizer(prompt, return_tensors='pt')
|
| 81 |
+
# Generation with specific configurations
|
| 82 |
+
output = model.generate(
|
| 83 |
+
**inputs,
|
| 84 |
+
max_new_tokens=128,
|
| 85 |
+
do_sample=True,
|
| 86 |
+
temperature=0.7
|
| 87 |
+
)
|
| 88 |
+
response = tokenizer.batch_decode(output)
|
| 89 |
+
#<|user|>
|
| 90 |
+
#Hi! How are you doing?</s>
|
| 91 |
+
#<|assistant|>
|
| 92 |
+
#I'm doing well, thank you! How are you?</s>
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
## 📎 **Citation**
|
| 96 |
+
|
| 97 |
+
```
|
| 98 |
+
@misc{hong2024orpo,
|
| 99 |
+
title={ORPO: Monolithic Preference Optimization without Reference Model},
|
| 100 |
+
author={Jiwoo Hong and Noah Lee and James Thorne},
|
| 101 |
+
year={2024},
|
| 102 |
+
eprint={2403.07691},
|
| 103 |
+
archivePrefix={arXiv},
|
| 104 |
+
primaryClass={cs.CL}
|
| 105 |
+
}
|
| 106 |
+
```
|