# ASAG XLNet Regression Model This model evaluates student answers by comparing them to reference answers and predicting a grade (regression). ## Model Details - **Model Type:** XLNet for Regression - **Task:** Automatic Short Answer Grading (ASAG) - **Framework:** PyTorch/Transformers - **Base Model:** xlnet-base-cased ## Usage ```python from transformers import XLNetTokenizer, XLNetForSequenceClassification import torch # Load model and tokenizer tokenizer = XLNetTokenizer.from_pretrained("kenzykhaled/asag-xlnet-regression") model = XLNetForSequenceClassification.from_pretrained("kenzykhaled/asag-xlnet-regression") # Prepare inputs student_answer = "It is vision." reference_answer = "The stimulus is seeing or hearing the cup fall." inputs = tokenizer( text=student_answer, text_pair=reference_answer, return_tensors="pt", padding=True, truncation=True ) # Get prediction with torch.no_grad(): outputs = model(**inputs) # Get predicted grade (normalized between 0-1) predicted_grade = outputs.logits.item() predicted_grade = max(0, min(1, predicted_grade)) print(f"Predicted grade: {predicted_grade:.4f}") ``` ## Training Data This model was trained on the Meyerger/ASAG2024 dataset. ## Performance The model achieves the following metrics on the validation set: - MSE (Mean Squared Error) - RMSE (Root Mean Squared Error) - MAE (Mean Absolute Error) - Pearson Correlation