Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- cosyvoice/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/cli/.ipynb_checkpoints/model-checkpoint.py +466 -0
- cosyvoice/cli/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/cli/__pycache__/cosyvoice.cpython-310.pyc +0 -0
- cosyvoice/cli/__pycache__/frontend.cpython-310.pyc +0 -0
- cosyvoice/cli/__pycache__/model.cpython-310.pyc +0 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/dataset/__pycache__/processor.cpython-310.pyc +0 -0
- cosyvoice/dataset/processor.py +435 -0
- cosyvoice/flow/__pycache__/decoder.cpython-310.pyc +0 -0
- cosyvoice/flow/__pycache__/flow.cpython-310.pyc +0 -0
- cosyvoice/flow/__pycache__/flow_matching.cpython-310.pyc +0 -0
- cosyvoice/flow/decoder.py +301 -0
- cosyvoice/flow/flow.py +239 -0
- cosyvoice/flow/flow_matching.py +264 -0
- cosyvoice/flow/length_regulator.py +69 -0
- cosyvoice/hifigan/__pycache__/f0_predictor.cpython-310.pyc +0 -0
- cosyvoice/hifigan/discriminator.py +140 -0
- cosyvoice/hifigan/f0_predictor.py +55 -0
- cosyvoice/hifigan/generator.py +411 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/__pycache__/llm.cpython-310.pyc +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +166 -0
- cosyvoice/utils/executor.py +172 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/mask.py +267 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +345 -0
- examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml +257 -0
- examples/libritts/cosyvoice/conf/cosyvoice.yaml +257 -0
- examples/libritts/cosyvoice/conf/ds_stage2.json +42 -0
- examples/libritts/cosyvoice/local/download_and_untar.sh +97 -0
- examples/libritts/cosyvoice/local/prepare_data.py +53 -0
- examples/libritts/cosyvoice/path.sh +3 -0
- examples/libritts/cosyvoice/run.sh +126 -0
- examples/libritts/cosyvoice/tts_text.json +5 -0
- examples/magicdata-read/cosyvoice/path.sh +3 -0
- examples/magicdata-read/cosyvoice/run.sh +111 -0
- runtime/python/grpc/.ipynb_checkpoints/client-checkpoint.py +106 -0
- runtime/python/grpc/.ipynb_checkpoints/cosyvoice_pb2-checkpoint.py +39 -0
- runtime/python/grpc/.ipynb_checkpoints/cosyvoice_pb2_grpc-checkpoint.py +66 -0
- runtime/python/grpc/__pycache__/cosyvoice_pb2.cpython-310.pyc +0 -0
- third_party/Matcha-TTS/configs/callbacks/model_checkpoint.yaml +17 -0
- third_party/Matcha-TTS/configs/callbacks/model_summary.yaml +5 -0
- third_party/Matcha-TTS/configs/logger/comet.yaml +12 -0
- third_party/Matcha-TTS/configs/logger/csv.yaml +7 -0
- third_party/Matcha-TTS/configs/logger/many_loggers.yaml +9 -0
- third_party/Matcha-TTS/configs/logger/mlflow.yaml +12 -0
cosyvoice/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
cosyvoice/cli/.ipynb_checkpoints/model-checkpoint.py
ADDED
|
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import os
|
| 15 |
+
from typing import Generator
|
| 16 |
+
import torch
|
| 17 |
+
import numpy as np
|
| 18 |
+
import threading
|
| 19 |
+
import time
|
| 20 |
+
from torch.nn import functional as F
|
| 21 |
+
from contextlib import nullcontext
|
| 22 |
+
import uuid
|
| 23 |
+
from cosyvoice.utils.common import fade_in_out
|
| 24 |
+
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
| 25 |
+
from cosyvoice.flow.flow_matching import EstimatorWrapper
|
| 26 |
+
import queue
|
| 27 |
+
|
| 28 |
+
class CosyVoiceModel:
|
| 29 |
+
|
| 30 |
+
def __init__(self,
|
| 31 |
+
llm: torch.nn.Module,
|
| 32 |
+
flow: torch.nn.Module,
|
| 33 |
+
hift: torch.nn.Module,
|
| 34 |
+
fp16: bool):
|
| 35 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 36 |
+
self.llm = llm
|
| 37 |
+
self.flow = flow
|
| 38 |
+
self.hift = hift
|
| 39 |
+
self.fp16 = fp16
|
| 40 |
+
self.llm.fp16 = fp16
|
| 41 |
+
self.flow.fp16 = fp16
|
| 42 |
+
if self.fp16 is True:
|
| 43 |
+
self.llm.half()
|
| 44 |
+
self.flow.half()
|
| 45 |
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
| 46 |
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
| 47 |
+
self.token_overlap_len = 20
|
| 48 |
+
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
| 49 |
+
self.flow.decoder.estimator.static_chunk_size = 0
|
| 50 |
+
# mel fade in out
|
| 51 |
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
| 52 |
+
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
| 53 |
+
# hift cache
|
| 54 |
+
self.mel_cache_len = 20
|
| 55 |
+
self.source_cache_len = int(self.mel_cache_len * 256)
|
| 56 |
+
# speech fade in out
|
| 57 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
| 58 |
+
# rtf and decoding related
|
| 59 |
+
self.stream_scale_factor = 1
|
| 60 |
+
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
| 61 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
| 62 |
+
self.lock = threading.Lock()
|
| 63 |
+
# dict used to store session related variable
|
| 64 |
+
self.tts_speech_token_dict = {}
|
| 65 |
+
self.llm_end_dict = {}
|
| 66 |
+
self.mel_overlap_dict = {}
|
| 67 |
+
self.flow_cache_dict = {}
|
| 68 |
+
self.hift_cache_dict = {}
|
| 69 |
+
|
| 70 |
+
self.stream_context_pool = queue.Queue()
|
| 71 |
+
for _ in range(10):
|
| 72 |
+
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
| 73 |
+
|
| 74 |
+
self.is_cuda_available = torch.cuda.is_available()
|
| 75 |
+
|
| 76 |
+
def load(self, llm_model, flow_model, hift_model):
|
| 77 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
| 78 |
+
self.llm.to(self.device).eval()
|
| 79 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
| 80 |
+
self.flow.to(self.device).eval()
|
| 81 |
+
# in case hift_model is a hifigan model
|
| 82 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
| 83 |
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
| 84 |
+
self.hift.to(self.device).eval()
|
| 85 |
+
|
| 86 |
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
| 87 |
+
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
| 88 |
+
self.llm.text_encoder = llm_text_encoder
|
| 89 |
+
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
| 90 |
+
self.llm.llm = llm_llm
|
| 91 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
| 92 |
+
self.flow.encoder = flow_encoder
|
| 93 |
+
|
| 94 |
+
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16, estimator_count=8): # use 8 estimators
|
| 95 |
+
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
| 96 |
+
if not os.path.exists(flow_decoder_estimator_model):
|
| 97 |
+
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
| 98 |
+
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
| 99 |
+
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
| 100 |
+
del self.flow.decoder.estimator
|
| 101 |
+
import tensorrt as trt
|
| 102 |
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
| 103 |
+
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
| 104 |
+
if self.flow.decoder.estimator_engine is None:
|
| 105 |
+
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
| 106 |
+
self.flow.decoder.estimator = EstimatorWrapper(self.flow.decoder.estimator_engine, estimator_count=estimator_count)
|
| 107 |
+
|
| 108 |
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
| 109 |
+
with self.llm_context:
|
| 110 |
+
if isinstance(text, Generator):
|
| 111 |
+
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
| 112 |
+
for i in self.llm.inference_bistream(text=text,
|
| 113 |
+
prompt_text=prompt_text.to(self.device),
|
| 114 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
| 115 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
| 116 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
| 117 |
+
embedding=llm_embedding.to(self.device)):
|
| 118 |
+
self.tts_speech_token_dict[uuid].append(i)
|
| 119 |
+
else:
|
| 120 |
+
for i in self.llm.inference(text=text.to(self.device),
|
| 121 |
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
| 122 |
+
prompt_text=prompt_text.to(self.device),
|
| 123 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
| 124 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
| 125 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
| 126 |
+
embedding=llm_embedding.to(self.device)):
|
| 127 |
+
self.tts_speech_token_dict[uuid].append(i)
|
| 128 |
+
self.llm_end_dict[uuid] = True
|
| 129 |
+
|
| 130 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
| 131 |
+
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
| 132 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
| 133 |
+
prompt_token=prompt_token.to(self.device),
|
| 134 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
| 135 |
+
prompt_feat=prompt_feat.to(self.device),
|
| 136 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
| 137 |
+
embedding=embedding.to(self.device),
|
| 138 |
+
flow_cache=self.flow_cache_dict[uuid])
|
| 139 |
+
self.flow_cache_dict[uuid] = flow_cache
|
| 140 |
+
|
| 141 |
+
# mel overlap fade in out
|
| 142 |
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
| 143 |
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
| 144 |
+
# append hift cache
|
| 145 |
+
if self.hift_cache_dict[uuid] is not None:
|
| 146 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
| 147 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
| 148 |
+
else:
|
| 149 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
| 150 |
+
# keep overlap mel and hift cache
|
| 151 |
+
if finalize is False:
|
| 152 |
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
| 153 |
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
| 154 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
| 155 |
+
if self.hift_cache_dict[uuid] is not None:
|
| 156 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
| 157 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
| 158 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
| 159 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
| 160 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
| 161 |
+
else:
|
| 162 |
+
if speed != 1.0:
|
| 163 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
| 164 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
| 165 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
| 166 |
+
if self.hift_cache_dict[uuid] is not None:
|
| 167 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
| 168 |
+
return tts_speech
|
| 169 |
+
|
| 170 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
| 171 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
| 172 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
| 173 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
| 174 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
| 175 |
+
# this_uuid is used to track variables related to this inference thread
|
| 176 |
+
|
| 177 |
+
stream_context = self.stream_context_pool.get()
|
| 178 |
+
with stream_context:
|
| 179 |
+
|
| 180 |
+
this_uuid = str(uuid.uuid1())
|
| 181 |
+
with self.lock:
|
| 182 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
| 183 |
+
self.hift_cache_dict[this_uuid] = None
|
| 184 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
| 185 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
| 186 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
| 187 |
+
p.start()
|
| 188 |
+
if stream is True:
|
| 189 |
+
token_hop_len = self.token_min_hop_len
|
| 190 |
+
while True:
|
| 191 |
+
time.sleep(0.1)
|
| 192 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
| 193 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
| 194 |
+
.unsqueeze(dim=0)
|
| 195 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 196 |
+
prompt_token=flow_prompt_speech_token,
|
| 197 |
+
prompt_feat=prompt_speech_feat,
|
| 198 |
+
embedding=flow_embedding,
|
| 199 |
+
uuid=this_uuid,
|
| 200 |
+
finalize=False)
|
| 201 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 202 |
+
with self.lock:
|
| 203 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
| 204 |
+
# increase token_hop_len for better speech quality
|
| 205 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
| 206 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
| 207 |
+
break
|
| 208 |
+
p.join()
|
| 209 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
| 210 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
| 211 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 212 |
+
prompt_token=flow_prompt_speech_token,
|
| 213 |
+
prompt_feat=prompt_speech_feat,
|
| 214 |
+
embedding=flow_embedding,
|
| 215 |
+
uuid=this_uuid,
|
| 216 |
+
finalize=True)
|
| 217 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 218 |
+
else:
|
| 219 |
+
# deal with all tokens
|
| 220 |
+
p.join()
|
| 221 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
| 222 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 223 |
+
prompt_token=flow_prompt_speech_token,
|
| 224 |
+
prompt_feat=prompt_speech_feat,
|
| 225 |
+
embedding=flow_embedding,
|
| 226 |
+
uuid=this_uuid,
|
| 227 |
+
finalize=True,
|
| 228 |
+
speed=speed)
|
| 229 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 230 |
+
with self.lock:
|
| 231 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
| 232 |
+
self.llm_end_dict.pop(this_uuid)
|
| 233 |
+
self.mel_overlap_dict.pop(this_uuid)
|
| 234 |
+
self.hift_cache_dict.pop(this_uuid)
|
| 235 |
+
self.flow_cache_dict.pop(this_uuid)
|
| 236 |
+
|
| 237 |
+
self.synchronize_stream()
|
| 238 |
+
self.stream_context_pool.put(stream_context)
|
| 239 |
+
torch.cuda.empty_cache()
|
| 240 |
+
|
| 241 |
+
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
| 242 |
+
# this_uuid is used to track variables related to this inference thread
|
| 243 |
+
this_uuid = str(uuid.uuid1())
|
| 244 |
+
with self.lock:
|
| 245 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
| 246 |
+
self.hift_cache_dict[this_uuid] = None
|
| 247 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
| 248 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
| 249 |
+
if stream is True:
|
| 250 |
+
token_hop_len = self.token_min_hop_len
|
| 251 |
+
while True:
|
| 252 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
| 253 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
| 254 |
+
.unsqueeze(dim=0)
|
| 255 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 256 |
+
prompt_token=flow_prompt_speech_token,
|
| 257 |
+
prompt_feat=prompt_speech_feat,
|
| 258 |
+
embedding=flow_embedding,
|
| 259 |
+
uuid=this_uuid,
|
| 260 |
+
finalize=False)
|
| 261 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 262 |
+
with self.lock:
|
| 263 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
| 264 |
+
# increase token_hop_len for better speech quality
|
| 265 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
| 266 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
| 267 |
+
break
|
| 268 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
| 269 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
| 270 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 271 |
+
prompt_token=flow_prompt_speech_token,
|
| 272 |
+
prompt_feat=prompt_speech_feat,
|
| 273 |
+
embedding=flow_embedding,
|
| 274 |
+
uuid=this_uuid,
|
| 275 |
+
finalize=True)
|
| 276 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 277 |
+
else:
|
| 278 |
+
# deal with all tokens
|
| 279 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
| 280 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 281 |
+
prompt_token=flow_prompt_speech_token,
|
| 282 |
+
prompt_feat=prompt_speech_feat,
|
| 283 |
+
embedding=flow_embedding,
|
| 284 |
+
uuid=this_uuid,
|
| 285 |
+
finalize=True,
|
| 286 |
+
speed=speed)
|
| 287 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 288 |
+
with self.lock:
|
| 289 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
| 290 |
+
self.llm_end_dict.pop(this_uuid)
|
| 291 |
+
self.mel_overlap_dict.pop(this_uuid)
|
| 292 |
+
self.hift_cache_dict.pop(this_uuid)
|
| 293 |
+
torch.cuda.empty_cache()
|
| 294 |
+
|
| 295 |
+
def synchronize_stream(self):
|
| 296 |
+
if self.is_cuda_available:
|
| 297 |
+
torch.cuda.current_stream().synchronize()
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class CosyVoice2Model(CosyVoiceModel):
|
| 301 |
+
|
| 302 |
+
def __init__(self,
|
| 303 |
+
llm: torch.nn.Module,
|
| 304 |
+
flow: torch.nn.Module,
|
| 305 |
+
hift: torch.nn.Module,
|
| 306 |
+
fp16: bool):
|
| 307 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 308 |
+
self.llm = llm
|
| 309 |
+
self.flow = flow
|
| 310 |
+
self.hift = hift
|
| 311 |
+
self.fp16 = fp16
|
| 312 |
+
self.llm.fp16 = fp16
|
| 313 |
+
self.flow.fp16 = fp16
|
| 314 |
+
if self.fp16 is True:
|
| 315 |
+
self.llm.half()
|
| 316 |
+
self.flow.half()
|
| 317 |
+
self.token_hop_len = 2 * self.flow.input_frame_rate
|
| 318 |
+
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
| 319 |
+
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
| 320 |
+
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
| 321 |
+
# hift cache
|
| 322 |
+
self.mel_cache_len = 8
|
| 323 |
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
| 324 |
+
# speech fade in out
|
| 325 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
| 326 |
+
# rtf and decoding related
|
| 327 |
+
self.stream_scale_factor = 1
|
| 328 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
| 329 |
+
self.lock = threading.Lock()
|
| 330 |
+
# dict used to store session related variable
|
| 331 |
+
self.tts_speech_token_dict = {}
|
| 332 |
+
self.llm_end_dict = {}
|
| 333 |
+
self.hift_cache_dict = {}
|
| 334 |
+
|
| 335 |
+
self.stream_context_pool = queue.Queue()
|
| 336 |
+
for _ in range(10):
|
| 337 |
+
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
| 338 |
+
|
| 339 |
+
self.is_cuda_available = torch.cuda.is_available()
|
| 340 |
+
|
| 341 |
+
def load_jit(self, flow_encoder_model):
|
| 342 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
| 343 |
+
self.flow.encoder = flow_encoder
|
| 344 |
+
|
| 345 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
| 346 |
+
|
| 347 |
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
| 348 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
| 349 |
+
prompt_token=prompt_token.to(self.device),
|
| 350 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
| 351 |
+
prompt_feat=prompt_feat.to(self.device),
|
| 352 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
| 353 |
+
embedding=embedding.to(self.device),
|
| 354 |
+
finalize=finalize)
|
| 355 |
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
| 356 |
+
# append hift cache
|
| 357 |
+
if self.hift_cache_dict[uuid] is not None:
|
| 358 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
| 359 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
| 360 |
+
else:
|
| 361 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
| 362 |
+
# keep overlap mel and hift cache
|
| 363 |
+
if finalize is False:
|
| 364 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
| 365 |
+
if self.hift_cache_dict[uuid] is not None:
|
| 366 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
| 367 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
| 368 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
| 369 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
| 370 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
| 371 |
+
else:
|
| 372 |
+
if speed != 1.0:
|
| 373 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
| 374 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
| 375 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
| 376 |
+
if self.hift_cache_dict[uuid] is not None:
|
| 377 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
| 378 |
+
return tts_speech
|
| 379 |
+
|
| 380 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
| 381 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
| 382 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
| 383 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
| 384 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
| 385 |
+
# this_uuid is used to track variables related to this inference thread
|
| 386 |
+
self.synchronize_stream()
|
| 387 |
+
stream_context = self.stream_context_pool.get()
|
| 388 |
+
with stream_context:
|
| 389 |
+
|
| 390 |
+
this_uuid = str(uuid.uuid1())
|
| 391 |
+
with self.lock:
|
| 392 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
| 393 |
+
self.hift_cache_dict[this_uuid] = None
|
| 394 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
| 395 |
+
p.start()
|
| 396 |
+
if stream is True:
|
| 397 |
+
token_offset = 0
|
| 398 |
+
while True:
|
| 399 |
+
time.sleep(0.1)
|
| 400 |
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
| 401 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
| 402 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 403 |
+
prompt_token=flow_prompt_speech_token,
|
| 404 |
+
prompt_feat=prompt_speech_feat,
|
| 405 |
+
embedding=flow_embedding,
|
| 406 |
+
uuid=this_uuid,
|
| 407 |
+
token_offset=token_offset,
|
| 408 |
+
finalize=False)
|
| 409 |
+
token_offset += self.token_hop_len
|
| 410 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 411 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
| 412 |
+
break
|
| 413 |
+
p.join()
|
| 414 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
| 415 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
| 416 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 417 |
+
prompt_token=flow_prompt_speech_token,
|
| 418 |
+
prompt_feat=prompt_speech_feat,
|
| 419 |
+
embedding=flow_embedding,
|
| 420 |
+
uuid=this_uuid,
|
| 421 |
+
token_offset=token_offset,
|
| 422 |
+
finalize=True)
|
| 423 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 424 |
+
else:
|
| 425 |
+
# deal with all tokens
|
| 426 |
+
p.join()
|
| 427 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
| 428 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
| 429 |
+
prompt_token=flow_prompt_speech_token,
|
| 430 |
+
prompt_feat=prompt_speech_feat,
|
| 431 |
+
embedding=flow_embedding,
|
| 432 |
+
uuid=this_uuid,
|
| 433 |
+
token_offset=0,
|
| 434 |
+
finalize=True,
|
| 435 |
+
speed=speed)
|
| 436 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
| 437 |
+
with self.lock:
|
| 438 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
| 439 |
+
self.llm_end_dict.pop(this_uuid)
|
| 440 |
+
|
| 441 |
+
self.synchronize_stream()
|
| 442 |
+
self.stream_context_pool.put(stream_context)
|
| 443 |
+
torch.cuda.empty_cache()
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class VllmCosyVoice2Model(CosyVoice2Model):
|
| 447 |
+
def __init__(self,
|
| 448 |
+
model_dir: str,
|
| 449 |
+
flow: torch.nn.Module,
|
| 450 |
+
hift: torch.nn.Module,
|
| 451 |
+
fp16: bool):
|
| 452 |
+
try:
|
| 453 |
+
from cosyvoice.llm.llm_vllm import VllmQwen2LM
|
| 454 |
+
except Exception as e:
|
| 455 |
+
raise e
|
| 456 |
+
llm = VllmQwen2LM(model_dir)
|
| 457 |
+
super().__init__(llm,flow,hift,fp16)
|
| 458 |
+
|
| 459 |
+
def load(self, llm_model, flow_model, hift_model):
|
| 460 |
+
self.flow.load_state_dict(torch.load(flow_model, weights_only=True, map_location=self.device), strict=True)
|
| 461 |
+
self.flow.to(self.device).eval()
|
| 462 |
+
# in case hift_model is a hifigan model
|
| 463 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in
|
| 464 |
+
torch.load(hift_model, weights_only=True, map_location=self.device).items()}
|
| 465 |
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
| 466 |
+
self.hift.to(self.device).eval()
|
cosyvoice/cli/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (176 Bytes). View file
|
|
|
cosyvoice/cli/__pycache__/cosyvoice.cpython-310.pyc
ADDED
|
Binary file (8.89 kB). View file
|
|
|
cosyvoice/cli/__pycache__/frontend.cpython-310.pyc
ADDED
|
Binary file (10.9 kB). View file
|
|
|
cosyvoice/cli/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
cosyvoice/dataset/__init__.py
ADDED
|
File without changes
|
cosyvoice/dataset/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (180 Bytes). View file
|
|
|
cosyvoice/dataset/__pycache__/processor.cpython-310.pyc
ADDED
|
Binary file (12.9 kB). View file
|
|
|
cosyvoice/dataset/processor.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import logging
|
| 15 |
+
import random
|
| 16 |
+
|
| 17 |
+
import pyarrow.parquet as pq
|
| 18 |
+
from io import BytesIO
|
| 19 |
+
import torch
|
| 20 |
+
import torchaudio
|
| 21 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
import pyworld as pw
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def parquet_opener(data, mode='train', tts_data={}):
|
| 30 |
+
""" Give url or local file, return file descriptor
|
| 31 |
+
Inplace operation.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
data(Iterable[str]): url or local file list
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
Iterable[{src, stream}]
|
| 38 |
+
"""
|
| 39 |
+
for sample in data:
|
| 40 |
+
assert 'src' in sample
|
| 41 |
+
url = sample['src']
|
| 42 |
+
try:
|
| 43 |
+
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
| 44 |
+
df = df.to_pandas()
|
| 45 |
+
for i in range(len(df)):
|
| 46 |
+
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
| 47 |
+
continue
|
| 48 |
+
sample.update(dict(df.loc[i]))
|
| 49 |
+
if mode == 'train':
|
| 50 |
+
# NOTE do not return sample directly, must initialize a new dict
|
| 51 |
+
yield {**sample}
|
| 52 |
+
else:
|
| 53 |
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
| 54 |
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
| 55 |
+
except Exception as ex:
|
| 56 |
+
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def filter(data,
|
| 60 |
+
max_length=10240,
|
| 61 |
+
min_length=10,
|
| 62 |
+
token_max_length=200,
|
| 63 |
+
token_min_length=1,
|
| 64 |
+
min_output_input_ratio=0.0005,
|
| 65 |
+
max_output_input_ratio=1,
|
| 66 |
+
mode='train'):
|
| 67 |
+
""" Filter sample according to feature and label length
|
| 68 |
+
Inplace operation.
|
| 69 |
+
|
| 70 |
+
Args::
|
| 71 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
| 72 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
| 73 |
+
min_length: drop utterance which is less than min_length(10ms)
|
| 74 |
+
token_max_length: drop utterance which is greater than
|
| 75 |
+
token_max_length, especially when use char unit for
|
| 76 |
+
english modeling
|
| 77 |
+
token_min_length: drop utterance which is
|
| 78 |
+
less than token_max_length
|
| 79 |
+
min_output_input_ratio: minimal ration of
|
| 80 |
+
token_length / feats_length(10ms)
|
| 81 |
+
max_output_input_ratio: maximum ration of
|
| 82 |
+
token_length / feats_length(10ms)
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
Iterable[{key, wav, label, sample_rate}]
|
| 86 |
+
"""
|
| 87 |
+
for sample in data:
|
| 88 |
+
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
| 89 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
| 90 |
+
del sample['audio_data']
|
| 91 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
| 92 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
| 93 |
+
if num_frames < min_length:
|
| 94 |
+
continue
|
| 95 |
+
if num_frames > max_length:
|
| 96 |
+
continue
|
| 97 |
+
if len(sample['text_token']) < token_min_length:
|
| 98 |
+
continue
|
| 99 |
+
if len(sample['text_token']) > token_max_length:
|
| 100 |
+
continue
|
| 101 |
+
if len(sample['speech_token']) == 0:
|
| 102 |
+
continue
|
| 103 |
+
if num_frames != 0:
|
| 104 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
| 105 |
+
continue
|
| 106 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
| 107 |
+
continue
|
| 108 |
+
yield sample
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
| 112 |
+
""" Resample data.
|
| 113 |
+
Inplace operation.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
| 117 |
+
resample_rate: target resample rate
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
Iterable[{key, wav, label, sample_rate}]
|
| 121 |
+
"""
|
| 122 |
+
for sample in data:
|
| 123 |
+
assert 'sample_rate' in sample
|
| 124 |
+
assert 'speech' in sample
|
| 125 |
+
sample_rate = sample['sample_rate']
|
| 126 |
+
waveform = sample['speech']
|
| 127 |
+
if sample_rate != resample_rate:
|
| 128 |
+
if sample_rate < min_sample_rate:
|
| 129 |
+
continue
|
| 130 |
+
sample['sample_rate'] = resample_rate
|
| 131 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
| 132 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
| 133 |
+
max_val = sample['speech'].abs().max()
|
| 134 |
+
if max_val > 1:
|
| 135 |
+
sample['speech'] /= max_val
|
| 136 |
+
yield sample
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def truncate(data, truncate_length=24576, mode='train'):
|
| 140 |
+
""" Truncate data.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
| 144 |
+
truncate_length: truncate length
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
Iterable[{key, wav, label, sample_rate}]
|
| 148 |
+
"""
|
| 149 |
+
for sample in data:
|
| 150 |
+
waveform = sample['speech']
|
| 151 |
+
if waveform.shape[1] > truncate_length:
|
| 152 |
+
start = random.randint(0, waveform.shape[1] - truncate_length)
|
| 153 |
+
waveform = waveform[:, start: start + truncate_length]
|
| 154 |
+
else:
|
| 155 |
+
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
| 156 |
+
sample['speech'] = waveform
|
| 157 |
+
yield sample
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def compute_fbank(data,
|
| 161 |
+
feat_extractor,
|
| 162 |
+
mode='train'):
|
| 163 |
+
""" Extract fbank
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
| 167 |
+
|
| 168 |
+
Returns:
|
| 169 |
+
Iterable[{key, feat, label}]
|
| 170 |
+
"""
|
| 171 |
+
for sample in data:
|
| 172 |
+
assert 'sample_rate' in sample
|
| 173 |
+
assert 'speech' in sample
|
| 174 |
+
assert 'utt' in sample
|
| 175 |
+
assert 'text_token' in sample
|
| 176 |
+
waveform = sample['speech']
|
| 177 |
+
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
| 178 |
+
sample['speech_feat'] = mat
|
| 179 |
+
yield sample
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
| 183 |
+
""" Extract f0
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
Iterable[{key, feat, label}]
|
| 190 |
+
"""
|
| 191 |
+
frame_period = hop_size * 1000 / sample_rate
|
| 192 |
+
for sample in data:
|
| 193 |
+
assert 'sample_rate' in sample
|
| 194 |
+
assert 'speech' in sample
|
| 195 |
+
assert 'utt' in sample
|
| 196 |
+
assert 'text_token' in sample
|
| 197 |
+
waveform = sample['speech']
|
| 198 |
+
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
| 199 |
+
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
| 200 |
+
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
| 201 |
+
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
| 202 |
+
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
| 203 |
+
sample['pitch_feat'] = f0
|
| 204 |
+
yield sample
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def parse_embedding(data, normalize, mode='train'):
|
| 208 |
+
""" Parse utt_embedding/spk_embedding
|
| 209 |
+
|
| 210 |
+
Args:
|
| 211 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
Iterable[{key, feat, label}]
|
| 215 |
+
"""
|
| 216 |
+
for sample in data:
|
| 217 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
| 218 |
+
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
| 219 |
+
if normalize:
|
| 220 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
| 221 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
| 222 |
+
yield sample
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
| 226 |
+
""" Decode text to chars or BPE
|
| 227 |
+
Inplace operation
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
| 234 |
+
"""
|
| 235 |
+
tokenizer = get_tokenizer()
|
| 236 |
+
for sample in data:
|
| 237 |
+
assert 'text' in sample
|
| 238 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
| 239 |
+
if mode == 'inference':
|
| 240 |
+
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
| 241 |
+
yield sample
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
| 245 |
+
""" Local shuffle the data
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
data: Iterable[{key, feat, label}]
|
| 249 |
+
shuffle_size: buffer size for shuffle
|
| 250 |
+
|
| 251 |
+
Returns:
|
| 252 |
+
Iterable[{key, feat, label}]
|
| 253 |
+
"""
|
| 254 |
+
buf = []
|
| 255 |
+
for sample in data:
|
| 256 |
+
buf.append(sample)
|
| 257 |
+
if len(buf) >= shuffle_size:
|
| 258 |
+
random.shuffle(buf)
|
| 259 |
+
for x in buf:
|
| 260 |
+
yield x
|
| 261 |
+
buf = []
|
| 262 |
+
# The sample left over
|
| 263 |
+
random.shuffle(buf)
|
| 264 |
+
for x in buf:
|
| 265 |
+
yield x
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def sort(data, sort_size=500, mode='train'):
|
| 269 |
+
""" Sort the data by feature length.
|
| 270 |
+
Sort is used after shuffle and before batch, so we can group
|
| 271 |
+
utts with similar lengths into a batch, and `sort_size` should
|
| 272 |
+
be less than `shuffle_size`
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
data: Iterable[{key, feat, label}]
|
| 276 |
+
sort_size: buffer size for sort
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
Iterable[{key, feat, label}]
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
buf = []
|
| 283 |
+
for sample in data:
|
| 284 |
+
buf.append(sample)
|
| 285 |
+
if len(buf) >= sort_size:
|
| 286 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
| 287 |
+
for x in buf:
|
| 288 |
+
yield x
|
| 289 |
+
buf = []
|
| 290 |
+
# The sample left over
|
| 291 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
| 292 |
+
for x in buf:
|
| 293 |
+
yield x
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def static_batch(data, batch_size=16):
|
| 297 |
+
""" Static batch the data by `batch_size`
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
data: Iterable[{key, feat, label}]
|
| 301 |
+
batch_size: batch size
|
| 302 |
+
|
| 303 |
+
Returns:
|
| 304 |
+
Iterable[List[{key, feat, label}]]
|
| 305 |
+
"""
|
| 306 |
+
buf = []
|
| 307 |
+
for sample in data:
|
| 308 |
+
buf.append(sample)
|
| 309 |
+
if len(buf) >= batch_size:
|
| 310 |
+
yield buf
|
| 311 |
+
buf = []
|
| 312 |
+
if len(buf) > 0:
|
| 313 |
+
yield buf
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
| 317 |
+
""" Dynamic batch the data until the total frames in batch
|
| 318 |
+
reach `max_frames_in_batch`
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
data: Iterable[{key, feat, label}]
|
| 322 |
+
max_frames_in_batch: max_frames in one batch
|
| 323 |
+
|
| 324 |
+
Returns:
|
| 325 |
+
Iterable[List[{key, feat, label}]]
|
| 326 |
+
"""
|
| 327 |
+
buf = []
|
| 328 |
+
longest_frames = 0
|
| 329 |
+
for sample in data:
|
| 330 |
+
assert 'speech_feat' in sample
|
| 331 |
+
assert isinstance(sample['speech_feat'], torch.Tensor)
|
| 332 |
+
new_sample_frames = sample['speech_feat'].size(0)
|
| 333 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
| 334 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
| 335 |
+
if frames_after_padding > max_frames_in_batch:
|
| 336 |
+
yield buf
|
| 337 |
+
buf = [sample]
|
| 338 |
+
longest_frames = new_sample_frames
|
| 339 |
+
else:
|
| 340 |
+
buf.append(sample)
|
| 341 |
+
if len(buf) > 0:
|
| 342 |
+
yield buf
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
| 346 |
+
""" Wrapper for static/dynamic batch
|
| 347 |
+
"""
|
| 348 |
+
if mode == 'inference':
|
| 349 |
+
return static_batch(data, 1)
|
| 350 |
+
else:
|
| 351 |
+
if batch_type == 'static':
|
| 352 |
+
return static_batch(data, batch_size)
|
| 353 |
+
elif batch_type == 'dynamic':
|
| 354 |
+
return dynamic_batch(data, max_frames_in_batch)
|
| 355 |
+
else:
|
| 356 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
def padding(data, use_spk_embedding, mode='train', gan=False):
|
| 360 |
+
""" Padding the data into training data
|
| 361 |
+
|
| 362 |
+
Args:
|
| 363 |
+
data: Iterable[List[{key, feat, label}]]
|
| 364 |
+
|
| 365 |
+
Returns:
|
| 366 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
| 367 |
+
"""
|
| 368 |
+
for sample in data:
|
| 369 |
+
assert isinstance(sample, list)
|
| 370 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
| 371 |
+
dtype=torch.int32)
|
| 372 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
| 373 |
+
|
| 374 |
+
utts = [sample[i]['utt'] for i in order]
|
| 375 |
+
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
| 376 |
+
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
| 377 |
+
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
| 378 |
+
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
| 379 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
| 380 |
+
speech_token = pad_sequence(speech_token,
|
| 381 |
+
batch_first=True,
|
| 382 |
+
padding_value=0)
|
| 383 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
| 384 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
| 385 |
+
speech_feat = pad_sequence(speech_feat,
|
| 386 |
+
batch_first=True,
|
| 387 |
+
padding_value=0)
|
| 388 |
+
text = [sample[i]['text'] for i in order]
|
| 389 |
+
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
| 390 |
+
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
| 391 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
| 392 |
+
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
| 393 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
| 394 |
+
batch = {
|
| 395 |
+
"utts": utts,
|
| 396 |
+
"speech": speech,
|
| 397 |
+
"speech_len": speech_len,
|
| 398 |
+
"speech_token": speech_token,
|
| 399 |
+
"speech_token_len": speech_token_len,
|
| 400 |
+
"speech_feat": speech_feat,
|
| 401 |
+
"speech_feat_len": speech_feat_len,
|
| 402 |
+
"text": text,
|
| 403 |
+
"text_token": text_token,
|
| 404 |
+
"text_token_len": text_token_len,
|
| 405 |
+
"utt_embedding": utt_embedding,
|
| 406 |
+
"spk_embedding": spk_embedding,
|
| 407 |
+
}
|
| 408 |
+
if gan is True:
|
| 409 |
+
# in gan train, we need pitch_feat
|
| 410 |
+
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
| 411 |
+
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
| 412 |
+
pitch_feat = pad_sequence(pitch_feat,
|
| 413 |
+
batch_first=True,
|
| 414 |
+
padding_value=0)
|
| 415 |
+
batch["pitch_feat"] = pitch_feat
|
| 416 |
+
batch["pitch_feat_len"] = pitch_feat_len
|
| 417 |
+
else:
|
| 418 |
+
# only gan train needs speech, delete it to save memory
|
| 419 |
+
del batch["speech"]
|
| 420 |
+
del batch["speech_len"]
|
| 421 |
+
if mode == 'inference':
|
| 422 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
| 423 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
| 424 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
| 425 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
| 426 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
| 427 |
+
batch.update({'tts_text': tts_text,
|
| 428 |
+
'tts_index': tts_index,
|
| 429 |
+
'tts_text_token': tts_text_token,
|
| 430 |
+
'tts_text_token_len': tts_text_token_len})
|
| 431 |
+
if use_spk_embedding is True:
|
| 432 |
+
batch["embedding"] = batch["spk_embedding"]
|
| 433 |
+
else:
|
| 434 |
+
batch["embedding"] = batch["utt_embedding"]
|
| 435 |
+
yield batch
|
cosyvoice/flow/__pycache__/decoder.cpython-310.pyc
ADDED
|
Binary file (8.16 kB). View file
|
|
|
cosyvoice/flow/__pycache__/flow.cpython-310.pyc
ADDED
|
Binary file (6.47 kB). View file
|
|
|
cosyvoice/flow/__pycache__/flow_matching.cpython-310.pyc
ADDED
|
Binary file (8.3 kB). View file
|
|
|
cosyvoice/flow/decoder.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from einops import pack, rearrange, repeat
|
| 18 |
+
from cosyvoice.utils.common import mask_to_bias
|
| 19 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
| 20 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
| 21 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Transpose(torch.nn.Module):
|
| 25 |
+
def __init__(self, dim0: int, dim1: int):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.dim0 = dim0
|
| 28 |
+
self.dim1 = dim1
|
| 29 |
+
|
| 30 |
+
def forward(self, x: torch.Tensor):
|
| 31 |
+
x = torch.transpose(x, self.dim0, self.dim1)
|
| 32 |
+
return x
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class CausalBlock1D(Block1D):
|
| 36 |
+
def __init__(self, dim: int, dim_out: int):
|
| 37 |
+
super(CausalBlock1D, self).__init__(dim, dim_out)
|
| 38 |
+
self.block = torch.nn.Sequential(
|
| 39 |
+
CausalConv1d(dim, dim_out, 3),
|
| 40 |
+
Transpose(1, 2),
|
| 41 |
+
nn.LayerNorm(dim_out),
|
| 42 |
+
Transpose(1, 2),
|
| 43 |
+
nn.Mish(),
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
| 47 |
+
output = self.block(x * mask)
|
| 48 |
+
return output * mask
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class CausalResnetBlock1D(ResnetBlock1D):
|
| 52 |
+
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
| 53 |
+
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
| 54 |
+
self.block1 = CausalBlock1D(dim, dim_out)
|
| 55 |
+
self.block2 = CausalBlock1D(dim_out, dim_out)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class CausalConv1d(torch.nn.Conv1d):
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
in_channels: int,
|
| 62 |
+
out_channels: int,
|
| 63 |
+
kernel_size: int,
|
| 64 |
+
stride: int = 1,
|
| 65 |
+
dilation: int = 1,
|
| 66 |
+
groups: int = 1,
|
| 67 |
+
bias: bool = True,
|
| 68 |
+
padding_mode: str = 'zeros',
|
| 69 |
+
device=None,
|
| 70 |
+
dtype=None
|
| 71 |
+
) -> None:
|
| 72 |
+
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
| 73 |
+
kernel_size, stride,
|
| 74 |
+
padding=0, dilation=dilation,
|
| 75 |
+
groups=groups, bias=bias,
|
| 76 |
+
padding_mode=padding_mode,
|
| 77 |
+
device=device, dtype=dtype)
|
| 78 |
+
assert stride == 1
|
| 79 |
+
self.causal_padding = (kernel_size - 1, 0)
|
| 80 |
+
|
| 81 |
+
def forward(self, x: torch.Tensor):
|
| 82 |
+
x = F.pad(x, self.causal_padding)
|
| 83 |
+
x = super(CausalConv1d, self).forward(x)
|
| 84 |
+
return x
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class ConditionalDecoder(nn.Module):
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
in_channels,
|
| 91 |
+
out_channels,
|
| 92 |
+
causal=False,
|
| 93 |
+
channels=(256, 256),
|
| 94 |
+
dropout=0.05,
|
| 95 |
+
attention_head_dim=64,
|
| 96 |
+
n_blocks=1,
|
| 97 |
+
num_mid_blocks=2,
|
| 98 |
+
num_heads=4,
|
| 99 |
+
act_fn="snake",
|
| 100 |
+
):
|
| 101 |
+
"""
|
| 102 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
| 103 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
| 104 |
+
"""
|
| 105 |
+
super().__init__()
|
| 106 |
+
channels = tuple(channels)
|
| 107 |
+
self.in_channels = in_channels
|
| 108 |
+
self.out_channels = out_channels
|
| 109 |
+
self.causal = causal
|
| 110 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
| 111 |
+
time_embed_dim = channels[0] * 4
|
| 112 |
+
self.time_mlp = TimestepEmbedding(
|
| 113 |
+
in_channels=in_channels,
|
| 114 |
+
time_embed_dim=time_embed_dim,
|
| 115 |
+
act_fn="silu",
|
| 116 |
+
)
|
| 117 |
+
self.down_blocks = nn.ModuleList([])
|
| 118 |
+
self.mid_blocks = nn.ModuleList([])
|
| 119 |
+
self.up_blocks = nn.ModuleList([])
|
| 120 |
+
|
| 121 |
+
output_channel = in_channels
|
| 122 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
| 123 |
+
input_channel = output_channel
|
| 124 |
+
output_channel = channels[i]
|
| 125 |
+
is_last = i == len(channels) - 1
|
| 126 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
| 127 |
+
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
| 128 |
+
transformer_blocks = nn.ModuleList(
|
| 129 |
+
[
|
| 130 |
+
BasicTransformerBlock(
|
| 131 |
+
dim=output_channel,
|
| 132 |
+
num_attention_heads=num_heads,
|
| 133 |
+
attention_head_dim=attention_head_dim,
|
| 134 |
+
dropout=dropout,
|
| 135 |
+
activation_fn=act_fn,
|
| 136 |
+
)
|
| 137 |
+
for _ in range(n_blocks)
|
| 138 |
+
]
|
| 139 |
+
)
|
| 140 |
+
downsample = (
|
| 141 |
+
Downsample1D(output_channel) if not is_last else
|
| 142 |
+
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
| 143 |
+
)
|
| 144 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
| 145 |
+
|
| 146 |
+
for _ in range(num_mid_blocks):
|
| 147 |
+
input_channel = channels[-1]
|
| 148 |
+
out_channels = channels[-1]
|
| 149 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
| 150 |
+
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
| 151 |
+
|
| 152 |
+
transformer_blocks = nn.ModuleList(
|
| 153 |
+
[
|
| 154 |
+
BasicTransformerBlock(
|
| 155 |
+
dim=output_channel,
|
| 156 |
+
num_attention_heads=num_heads,
|
| 157 |
+
attention_head_dim=attention_head_dim,
|
| 158 |
+
dropout=dropout,
|
| 159 |
+
activation_fn=act_fn,
|
| 160 |
+
)
|
| 161 |
+
for _ in range(n_blocks)
|
| 162 |
+
]
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
| 166 |
+
|
| 167 |
+
channels = channels[::-1] + (channels[0],)
|
| 168 |
+
for i in range(len(channels) - 1):
|
| 169 |
+
input_channel = channels[i] * 2
|
| 170 |
+
output_channel = channels[i + 1]
|
| 171 |
+
is_last = i == len(channels) - 2
|
| 172 |
+
resnet = CausalResnetBlock1D(
|
| 173 |
+
dim=input_channel,
|
| 174 |
+
dim_out=output_channel,
|
| 175 |
+
time_emb_dim=time_embed_dim,
|
| 176 |
+
) if self.causal else ResnetBlock1D(
|
| 177 |
+
dim=input_channel,
|
| 178 |
+
dim_out=output_channel,
|
| 179 |
+
time_emb_dim=time_embed_dim,
|
| 180 |
+
)
|
| 181 |
+
transformer_blocks = nn.ModuleList(
|
| 182 |
+
[
|
| 183 |
+
BasicTransformerBlock(
|
| 184 |
+
dim=output_channel,
|
| 185 |
+
num_attention_heads=num_heads,
|
| 186 |
+
attention_head_dim=attention_head_dim,
|
| 187 |
+
dropout=dropout,
|
| 188 |
+
activation_fn=act_fn,
|
| 189 |
+
)
|
| 190 |
+
for _ in range(n_blocks)
|
| 191 |
+
]
|
| 192 |
+
)
|
| 193 |
+
upsample = (
|
| 194 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
| 195 |
+
if not is_last
|
| 196 |
+
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
| 197 |
+
)
|
| 198 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
| 199 |
+
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
| 200 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
| 201 |
+
self.initialize_weights()
|
| 202 |
+
|
| 203 |
+
def initialize_weights(self):
|
| 204 |
+
for m in self.modules():
|
| 205 |
+
if isinstance(m, nn.Conv1d):
|
| 206 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
| 207 |
+
if m.bias is not None:
|
| 208 |
+
nn.init.constant_(m.bias, 0)
|
| 209 |
+
elif isinstance(m, nn.GroupNorm):
|
| 210 |
+
nn.init.constant_(m.weight, 1)
|
| 211 |
+
nn.init.constant_(m.bias, 0)
|
| 212 |
+
elif isinstance(m, nn.Linear):
|
| 213 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
| 214 |
+
if m.bias is not None:
|
| 215 |
+
nn.init.constant_(m.bias, 0)
|
| 216 |
+
|
| 217 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
| 218 |
+
"""Forward pass of the UNet1DConditional model.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
| 222 |
+
mask (_type_): shape (batch_size, 1, time)
|
| 223 |
+
t (_type_): shape (batch_size)
|
| 224 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
| 225 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
| 226 |
+
|
| 227 |
+
Raises:
|
| 228 |
+
ValueError: _description_
|
| 229 |
+
ValueError: _description_
|
| 230 |
+
|
| 231 |
+
Returns:
|
| 232 |
+
_type_: _description_
|
| 233 |
+
"""
|
| 234 |
+
|
| 235 |
+
t = self.time_embeddings(t).to(t.dtype)
|
| 236 |
+
t = self.time_mlp(t)
|
| 237 |
+
|
| 238 |
+
x = pack([x, mu], "b * t")[0]
|
| 239 |
+
|
| 240 |
+
if spks is not None:
|
| 241 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
| 242 |
+
x = pack([x, spks], "b * t")[0]
|
| 243 |
+
if cond is not None:
|
| 244 |
+
x = pack([x, cond], "b * t")[0]
|
| 245 |
+
|
| 246 |
+
hiddens = []
|
| 247 |
+
masks = [mask]
|
| 248 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
| 249 |
+
mask_down = masks[-1]
|
| 250 |
+
x = resnet(x, mask_down, t)
|
| 251 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
| 252 |
+
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
| 253 |
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
| 254 |
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
| 255 |
+
for transformer_block in transformer_blocks:
|
| 256 |
+
x = transformer_block(
|
| 257 |
+
hidden_states=x,
|
| 258 |
+
attention_mask=attn_mask,
|
| 259 |
+
timestep=t,
|
| 260 |
+
)
|
| 261 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
| 262 |
+
hiddens.append(x) # Save hidden states for skip connections
|
| 263 |
+
x = downsample(x * mask_down)
|
| 264 |
+
masks.append(mask_down[:, :, ::2])
|
| 265 |
+
masks = masks[:-1]
|
| 266 |
+
mask_mid = masks[-1]
|
| 267 |
+
|
| 268 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
| 269 |
+
x = resnet(x, mask_mid, t)
|
| 270 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
| 271 |
+
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
| 272 |
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
| 273 |
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
| 274 |
+
for transformer_block in transformer_blocks:
|
| 275 |
+
x = transformer_block(
|
| 276 |
+
hidden_states=x,
|
| 277 |
+
attention_mask=attn_mask,
|
| 278 |
+
timestep=t,
|
| 279 |
+
)
|
| 280 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
| 281 |
+
|
| 282 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
| 283 |
+
mask_up = masks.pop()
|
| 284 |
+
skip = hiddens.pop()
|
| 285 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
| 286 |
+
x = resnet(x, mask_up, t)
|
| 287 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
| 288 |
+
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
| 289 |
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
| 290 |
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
| 291 |
+
for transformer_block in transformer_blocks:
|
| 292 |
+
x = transformer_block(
|
| 293 |
+
hidden_states=x,
|
| 294 |
+
attention_mask=attn_mask,
|
| 295 |
+
timestep=t,
|
| 296 |
+
)
|
| 297 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
| 298 |
+
x = upsample(x * mask_up)
|
| 299 |
+
x = self.final_block(x, mask_up)
|
| 300 |
+
output = self.final_proj(x * mask_up)
|
| 301 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import logging
|
| 15 |
+
import random
|
| 16 |
+
from typing import Dict, Optional
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
from omegaconf import DictConfig
|
| 21 |
+
from cosyvoice.utils.mask import make_pad_mask
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
| 25 |
+
def __init__(self,
|
| 26 |
+
input_size: int = 512,
|
| 27 |
+
output_size: int = 80,
|
| 28 |
+
spk_embed_dim: int = 192,
|
| 29 |
+
output_type: str = "mel",
|
| 30 |
+
vocab_size: int = 4096,
|
| 31 |
+
input_frame_rate: int = 50,
|
| 32 |
+
only_mask_loss: bool = True,
|
| 33 |
+
encoder: torch.nn.Module = None,
|
| 34 |
+
length_regulator: torch.nn.Module = None,
|
| 35 |
+
decoder: torch.nn.Module = None,
|
| 36 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
| 37 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
| 38 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
| 39 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
| 40 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
| 41 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
| 42 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.input_size = input_size
|
| 45 |
+
self.output_size = output_size
|
| 46 |
+
self.decoder_conf = decoder_conf
|
| 47 |
+
self.mel_feat_conf = mel_feat_conf
|
| 48 |
+
self.vocab_size = vocab_size
|
| 49 |
+
self.output_type = output_type
|
| 50 |
+
self.input_frame_rate = input_frame_rate
|
| 51 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
| 52 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
| 53 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
| 54 |
+
self.encoder = encoder
|
| 55 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
| 56 |
+
self.decoder = decoder
|
| 57 |
+
self.length_regulator = length_regulator
|
| 58 |
+
self.only_mask_loss = only_mask_loss
|
| 59 |
+
|
| 60 |
+
def forward(
|
| 61 |
+
self,
|
| 62 |
+
batch: dict,
|
| 63 |
+
device: torch.device,
|
| 64 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
| 65 |
+
token = batch['speech_token'].to(device)
|
| 66 |
+
token_len = batch['speech_token_len'].to(device)
|
| 67 |
+
feat = batch['speech_feat'].to(device)
|
| 68 |
+
feat_len = batch['speech_feat_len'].to(device)
|
| 69 |
+
embedding = batch['embedding'].to(device)
|
| 70 |
+
|
| 71 |
+
# xvec projection
|
| 72 |
+
embedding = F.normalize(embedding, dim=1)
|
| 73 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
| 74 |
+
|
| 75 |
+
# concat text and prompt_text
|
| 76 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
| 77 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
| 78 |
+
|
| 79 |
+
# text encode
|
| 80 |
+
h, h_lengths = self.encoder(token, token_len)
|
| 81 |
+
h = self.encoder_proj(h)
|
| 82 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
| 83 |
+
|
| 84 |
+
# get conditions
|
| 85 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
| 86 |
+
for i, j in enumerate(feat_len):
|
| 87 |
+
if random.random() < 0.5:
|
| 88 |
+
continue
|
| 89 |
+
index = random.randint(0, int(0.3 * j))
|
| 90 |
+
conds[i, :index] = feat[i, :index]
|
| 91 |
+
conds = conds.transpose(1, 2)
|
| 92 |
+
|
| 93 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
| 94 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
| 95 |
+
loss, _ = self.decoder.compute_loss(
|
| 96 |
+
feat.transpose(1, 2).contiguous(),
|
| 97 |
+
mask.unsqueeze(1),
|
| 98 |
+
h.transpose(1, 2).contiguous(),
|
| 99 |
+
embedding,
|
| 100 |
+
cond=conds
|
| 101 |
+
)
|
| 102 |
+
return {'loss': loss}
|
| 103 |
+
|
| 104 |
+
@torch.inference_mode()
|
| 105 |
+
def inference(self,
|
| 106 |
+
token,
|
| 107 |
+
token_len,
|
| 108 |
+
prompt_token,
|
| 109 |
+
prompt_token_len,
|
| 110 |
+
prompt_feat,
|
| 111 |
+
prompt_feat_len,
|
| 112 |
+
embedding,
|
| 113 |
+
flow_cache):
|
| 114 |
+
if self.fp16 is True:
|
| 115 |
+
prompt_feat = prompt_feat.half()
|
| 116 |
+
embedding = embedding.half()
|
| 117 |
+
|
| 118 |
+
assert token.shape[0] == 1
|
| 119 |
+
# xvec projection
|
| 120 |
+
embedding = F.normalize(embedding, dim=1)
|
| 121 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
| 122 |
+
|
| 123 |
+
# concat text and prompt_text
|
| 124 |
+
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
| 125 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
| 126 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
| 127 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
| 128 |
+
|
| 129 |
+
# text encode
|
| 130 |
+
h, h_lengths = self.encoder(token, token_len)
|
| 131 |
+
h = self.encoder_proj(h)
|
| 132 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
| 133 |
+
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
| 134 |
+
|
| 135 |
+
# get conditions
|
| 136 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
| 137 |
+
conds[:, :mel_len1] = prompt_feat
|
| 138 |
+
conds = conds.transpose(1, 2)
|
| 139 |
+
|
| 140 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
| 141 |
+
feat, flow_cache = self.decoder(
|
| 142 |
+
mu=h.transpose(1, 2).contiguous(),
|
| 143 |
+
mask=mask.unsqueeze(1),
|
| 144 |
+
spks=embedding,
|
| 145 |
+
cond=conds,
|
| 146 |
+
n_timesteps=10,
|
| 147 |
+
prompt_len=mel_len1,
|
| 148 |
+
flow_cache=flow_cache
|
| 149 |
+
)
|
| 150 |
+
feat = feat[:, :, mel_len1:]
|
| 151 |
+
assert feat.shape[2] == mel_len2
|
| 152 |
+
return feat.float(), flow_cache
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
| 156 |
+
def __init__(self,
|
| 157 |
+
input_size: int = 512,
|
| 158 |
+
output_size: int = 80,
|
| 159 |
+
spk_embed_dim: int = 192,
|
| 160 |
+
output_type: str = "mel",
|
| 161 |
+
vocab_size: int = 4096,
|
| 162 |
+
input_frame_rate: int = 50,
|
| 163 |
+
only_mask_loss: bool = True,
|
| 164 |
+
token_mel_ratio: int = 2,
|
| 165 |
+
pre_lookahead_len: int = 3,
|
| 166 |
+
encoder: torch.nn.Module = None,
|
| 167 |
+
decoder: torch.nn.Module = None,
|
| 168 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
| 169 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
| 170 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
| 171 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
| 172 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
| 173 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
| 174 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.input_size = input_size
|
| 177 |
+
self.output_size = output_size
|
| 178 |
+
self.decoder_conf = decoder_conf
|
| 179 |
+
self.mel_feat_conf = mel_feat_conf
|
| 180 |
+
self.vocab_size = vocab_size
|
| 181 |
+
self.output_type = output_type
|
| 182 |
+
self.input_frame_rate = input_frame_rate
|
| 183 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
| 184 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
| 185 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
| 186 |
+
self.encoder = encoder
|
| 187 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
| 188 |
+
self.decoder = decoder
|
| 189 |
+
self.only_mask_loss = only_mask_loss
|
| 190 |
+
self.token_mel_ratio = token_mel_ratio
|
| 191 |
+
self.pre_lookahead_len = pre_lookahead_len
|
| 192 |
+
|
| 193 |
+
@torch.inference_mode()
|
| 194 |
+
def inference(self,
|
| 195 |
+
token,
|
| 196 |
+
token_len,
|
| 197 |
+
prompt_token,
|
| 198 |
+
prompt_token_len,
|
| 199 |
+
prompt_feat,
|
| 200 |
+
prompt_feat_len,
|
| 201 |
+
embedding,
|
| 202 |
+
finalize):
|
| 203 |
+
if self.fp16 is True:
|
| 204 |
+
prompt_feat = prompt_feat.half()
|
| 205 |
+
embedding = embedding.half()
|
| 206 |
+
|
| 207 |
+
assert token.shape[0] == 1
|
| 208 |
+
# xvec projection
|
| 209 |
+
embedding = F.normalize(embedding, dim=1)
|
| 210 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
| 211 |
+
|
| 212 |
+
# concat text and prompt_text
|
| 213 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
| 214 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
| 215 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
| 216 |
+
|
| 217 |
+
# text encode
|
| 218 |
+
h, h_lengths = self.encoder(token, token_len)
|
| 219 |
+
if finalize is False:
|
| 220 |
+
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
| 221 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
| 222 |
+
h = self.encoder_proj(h)
|
| 223 |
+
|
| 224 |
+
# get conditions
|
| 225 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
| 226 |
+
conds[:, :mel_len1] = prompt_feat
|
| 227 |
+
conds = conds.transpose(1, 2)
|
| 228 |
+
|
| 229 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
| 230 |
+
feat, _ = self.decoder(
|
| 231 |
+
mu=h.transpose(1, 2).contiguous(),
|
| 232 |
+
mask=mask.unsqueeze(1),
|
| 233 |
+
spks=embedding,
|
| 234 |
+
cond=conds,
|
| 235 |
+
n_timesteps=10
|
| 236 |
+
)
|
| 237 |
+
feat = feat[:, :, mel_len1:]
|
| 238 |
+
assert feat.shape[2] == mel_len2
|
| 239 |
+
return feat.float(), None
|
cosyvoice/flow/flow_matching.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import threading
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from matcha.models.components.flow_matching import BASECFM
|
| 18 |
+
import queue
|
| 19 |
+
|
| 20 |
+
class EstimatorWrapper:
|
| 21 |
+
def __init__(self, estimator_engine, estimator_count=2,):
|
| 22 |
+
self.estimators = queue.Queue()
|
| 23 |
+
self.estimator_engine = estimator_engine
|
| 24 |
+
for _ in range(estimator_count):
|
| 25 |
+
estimator = estimator_engine.create_execution_context()
|
| 26 |
+
if estimator is not None:
|
| 27 |
+
self.estimators.put(estimator)
|
| 28 |
+
|
| 29 |
+
if self.estimators.empty():
|
| 30 |
+
raise Exception("No available estimator")
|
| 31 |
+
|
| 32 |
+
def acquire_estimator(self):
|
| 33 |
+
return self.estimators.get(), self.estimator_engine
|
| 34 |
+
|
| 35 |
+
def release_estimator(self, estimator):
|
| 36 |
+
self.estimators.put(estimator)
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
class ConditionalCFM(BASECFM):
|
| 40 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
| 41 |
+
super().__init__(
|
| 42 |
+
n_feats=in_channels,
|
| 43 |
+
cfm_params=cfm_params,
|
| 44 |
+
n_spks=n_spks,
|
| 45 |
+
spk_emb_dim=spk_emb_dim,
|
| 46 |
+
)
|
| 47 |
+
self.t_scheduler = cfm_params.t_scheduler
|
| 48 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
| 49 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
| 50 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
| 51 |
+
# Just change the architecture of the estimator here
|
| 52 |
+
self.estimator = estimator
|
| 53 |
+
self.lock = threading.Lock()
|
| 54 |
+
|
| 55 |
+
@torch.inference_mode()
|
| 56 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
| 57 |
+
"""Forward diffusion
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
mu (torch.Tensor): output of encoder
|
| 61 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 62 |
+
mask (torch.Tensor): output_mask
|
| 63 |
+
shape: (batch_size, 1, mel_timesteps)
|
| 64 |
+
n_timesteps (int): number of diffusion steps
|
| 65 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
| 66 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
| 67 |
+
shape: (batch_size, spk_emb_dim)
|
| 68 |
+
cond: Not used but kept for future purposes
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
sample: generated mel-spectrogram
|
| 72 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
| 76 |
+
cache_size = flow_cache.shape[2]
|
| 77 |
+
# fix prompt and overlap part mu and z
|
| 78 |
+
if cache_size != 0:
|
| 79 |
+
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
| 80 |
+
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
| 81 |
+
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
| 82 |
+
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
| 83 |
+
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
| 84 |
+
|
| 85 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
| 86 |
+
if self.t_scheduler == 'cosine':
|
| 87 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
| 88 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
| 89 |
+
|
| 90 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
| 91 |
+
"""
|
| 92 |
+
Fixed euler solver for ODEs.
|
| 93 |
+
Args:
|
| 94 |
+
x (torch.Tensor): random noise
|
| 95 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
| 96 |
+
shape: (n_timesteps + 1,)
|
| 97 |
+
mu (torch.Tensor): output of encoder
|
| 98 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 99 |
+
mask (torch.Tensor): output_mask
|
| 100 |
+
shape: (batch_size, 1, mel_timesteps)
|
| 101 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
| 102 |
+
shape: (batch_size, spk_emb_dim)
|
| 103 |
+
cond: Not used but kept for future purposes
|
| 104 |
+
"""
|
| 105 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
| 106 |
+
t = t.unsqueeze(dim=0)
|
| 107 |
+
|
| 108 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
| 109 |
+
# Or in future might add like a return_all_steps flag
|
| 110 |
+
sol = []
|
| 111 |
+
|
| 112 |
+
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
| 113 |
+
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
| 114 |
+
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
| 115 |
+
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
| 116 |
+
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
| 117 |
+
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
| 118 |
+
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
| 119 |
+
for step in range(1, len(t_span)):
|
| 120 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
| 121 |
+
x_in[:] = x
|
| 122 |
+
mask_in[:] = mask
|
| 123 |
+
mu_in[0] = mu
|
| 124 |
+
t_in[:] = t.unsqueeze(0)
|
| 125 |
+
spks_in[0] = spks
|
| 126 |
+
cond_in[0] = cond
|
| 127 |
+
dphi_dt = self.forward_estimator(
|
| 128 |
+
x_in, mask_in,
|
| 129 |
+
mu_in, t_in,
|
| 130 |
+
spks_in,
|
| 131 |
+
cond_in
|
| 132 |
+
)
|
| 133 |
+
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
| 134 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
| 135 |
+
x = x + dt * dphi_dt
|
| 136 |
+
t = t + dt
|
| 137 |
+
sol.append(x)
|
| 138 |
+
if step < len(t_span) - 1:
|
| 139 |
+
dt = t_span[step + 1] - t
|
| 140 |
+
|
| 141 |
+
return sol[-1].float()
|
| 142 |
+
|
| 143 |
+
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
| 144 |
+
if isinstance(self.estimator, torch.nn.Module):
|
| 145 |
+
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
| 146 |
+
else:
|
| 147 |
+
if isinstance(self.estimator, EstimatorWrapper):
|
| 148 |
+
estimator, engine = self.estimator.acquire_estimator()
|
| 149 |
+
|
| 150 |
+
estimator.set_input_shape('x', (2, 80, x.size(2)))
|
| 151 |
+
estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
| 152 |
+
estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
| 153 |
+
estimator.set_input_shape('t', (2,))
|
| 154 |
+
estimator.set_input_shape('spks', (2, 80))
|
| 155 |
+
estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
| 156 |
+
|
| 157 |
+
data_ptrs = [x.contiguous().data_ptr(),
|
| 158 |
+
mask.contiguous().data_ptr(),
|
| 159 |
+
mu.contiguous().data_ptr(),
|
| 160 |
+
t.contiguous().data_ptr(),
|
| 161 |
+
spks.contiguous().data_ptr(),
|
| 162 |
+
cond.contiguous().data_ptr(),
|
| 163 |
+
x.data_ptr()]
|
| 164 |
+
|
| 165 |
+
for idx, data_ptr in enumerate(data_ptrs):
|
| 166 |
+
estimator.set_tensor_address(engine.get_tensor_name(idx), data_ptr)
|
| 167 |
+
|
| 168 |
+
# run trt engine
|
| 169 |
+
estimator.execute_async_v3(torch.cuda.current_stream().cuda_stream)
|
| 170 |
+
|
| 171 |
+
torch.cuda.current_stream().synchronize()
|
| 172 |
+
self.estimator.release_estimator(estimator)
|
| 173 |
+
return x
|
| 174 |
+
else:
|
| 175 |
+
with self.lock:
|
| 176 |
+
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
| 177 |
+
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
| 178 |
+
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
| 179 |
+
self.estimator.set_input_shape('t', (2,))
|
| 180 |
+
self.estimator.set_input_shape('spks', (2, 80))
|
| 181 |
+
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
| 182 |
+
# run trt engine
|
| 183 |
+
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
| 184 |
+
mask.contiguous().data_ptr(),
|
| 185 |
+
mu.contiguous().data_ptr(),
|
| 186 |
+
t.contiguous().data_ptr(),
|
| 187 |
+
spks.contiguous().data_ptr(),
|
| 188 |
+
cond.contiguous().data_ptr(),
|
| 189 |
+
x.data_ptr()])
|
| 190 |
+
return x
|
| 191 |
+
|
| 192 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
| 193 |
+
"""Computes diffusion loss
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
x1 (torch.Tensor): Target
|
| 197 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 198 |
+
mask (torch.Tensor): target mask
|
| 199 |
+
shape: (batch_size, 1, mel_timesteps)
|
| 200 |
+
mu (torch.Tensor): output of encoder
|
| 201 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 202 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
| 203 |
+
shape: (batch_size, spk_emb_dim)
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
loss: conditional flow matching loss
|
| 207 |
+
y: conditional flow
|
| 208 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 209 |
+
"""
|
| 210 |
+
b, _, t = mu.shape
|
| 211 |
+
|
| 212 |
+
# random timestep
|
| 213 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
| 214 |
+
if self.t_scheduler == 'cosine':
|
| 215 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
| 216 |
+
# sample noise p(x_0)
|
| 217 |
+
z = torch.randn_like(x1)
|
| 218 |
+
|
| 219 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
| 220 |
+
u = x1 - (1 - self.sigma_min) * z
|
| 221 |
+
|
| 222 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
| 223 |
+
if self.training_cfg_rate > 0:
|
| 224 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
| 225 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
| 226 |
+
spks = spks * cfg_mask.view(-1, 1)
|
| 227 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
| 228 |
+
|
| 229 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
| 230 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
| 231 |
+
return loss, y
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class CausalConditionalCFM(ConditionalCFM):
|
| 235 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
| 236 |
+
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
| 237 |
+
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
| 238 |
+
|
| 239 |
+
@torch.inference_mode()
|
| 240 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
| 241 |
+
"""Forward diffusion
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
mu (torch.Tensor): output of encoder
|
| 245 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 246 |
+
mask (torch.Tensor): output_mask
|
| 247 |
+
shape: (batch_size, 1, mel_timesteps)
|
| 248 |
+
n_timesteps (int): number of diffusion steps
|
| 249 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
| 250 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
| 251 |
+
shape: (batch_size, spk_emb_dim)
|
| 252 |
+
cond: Not used but kept for future purposes
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
sample: generated mel-spectrogram
|
| 256 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
| 257 |
+
"""
|
| 258 |
+
|
| 259 |
+
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
| 260 |
+
# fix prompt and overlap part mu and z
|
| 261 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
| 262 |
+
if self.t_scheduler == 'cosine':
|
| 263 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
| 264 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
cosyvoice/flow/length_regulator.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Tuple
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch
|
| 17 |
+
from torch.nn import functional as F
|
| 18 |
+
from cosyvoice.utils.mask import make_pad_mask
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class InterpolateRegulator(nn.Module):
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
channels: int,
|
| 25 |
+
sampling_ratios: Tuple,
|
| 26 |
+
out_channels: int = None,
|
| 27 |
+
groups: int = 1,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.sampling_ratios = sampling_ratios
|
| 31 |
+
out_channels = out_channels or channels
|
| 32 |
+
model = nn.ModuleList([])
|
| 33 |
+
if len(sampling_ratios) > 0:
|
| 34 |
+
for _ in sampling_ratios:
|
| 35 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
| 36 |
+
norm = nn.GroupNorm(groups, channels)
|
| 37 |
+
act = nn.Mish()
|
| 38 |
+
model.extend([module, norm, act])
|
| 39 |
+
model.append(
|
| 40 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
| 41 |
+
)
|
| 42 |
+
self.model = nn.Sequential(*model)
|
| 43 |
+
|
| 44 |
+
def forward(self, x, ylens=None):
|
| 45 |
+
# x in (B, T, D)
|
| 46 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
| 47 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
| 48 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
| 49 |
+
olens = ylens
|
| 50 |
+
return out * mask, olens
|
| 51 |
+
|
| 52 |
+
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
| 53 |
+
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
| 54 |
+
# x in (B, T, D)
|
| 55 |
+
if x2.shape[1] > 40:
|
| 56 |
+
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
| 57 |
+
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
| 58 |
+
mode='linear')
|
| 59 |
+
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
| 60 |
+
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
| 61 |
+
else:
|
| 62 |
+
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
| 63 |
+
if x1.shape[1] != 0:
|
| 64 |
+
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
|
| 65 |
+
x = torch.concat([x1, x2], dim=2)
|
| 66 |
+
else:
|
| 67 |
+
x = x2
|
| 68 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
| 69 |
+
return out, mel_len1 + mel_len2
|
cosyvoice/hifigan/__pycache__/f0_predictor.cpython-310.pyc
ADDED
|
Binary file (1.39 kB). View file
|
|
|
cosyvoice/hifigan/discriminator.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.nn.utils.parametrizations import weight_norm
|
| 4 |
+
from typing import List, Optional, Tuple
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
from torchaudio.transforms import Spectrogram
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class MultipleDiscriminator(nn.Module):
|
| 10 |
+
def __init__(
|
| 11 |
+
self, mpd: nn.Module, mrd: nn.Module
|
| 12 |
+
):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.mpd = mpd
|
| 15 |
+
self.mrd = mrd
|
| 16 |
+
|
| 17 |
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
| 18 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
| 19 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
| 20 |
+
y_d_rs += this_y_d_rs
|
| 21 |
+
y_d_gs += this_y_d_gs
|
| 22 |
+
fmap_rs += this_fmap_rs
|
| 23 |
+
fmap_gs += this_fmap_gs
|
| 24 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
| 25 |
+
y_d_rs += this_y_d_rs
|
| 26 |
+
y_d_gs += this_y_d_gs
|
| 27 |
+
fmap_rs += this_fmap_rs
|
| 28 |
+
fmap_gs += this_fmap_gs
|
| 29 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class MultiResolutionDiscriminator(nn.Module):
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
| 36 |
+
num_embeddings: Optional[int] = None,
|
| 37 |
+
):
|
| 38 |
+
"""
|
| 39 |
+
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
| 40 |
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
| 44 |
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
| 45 |
+
Defaults to None.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.discriminators = nn.ModuleList(
|
| 50 |
+
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def forward(
|
| 54 |
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
| 55 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
| 56 |
+
y_d_rs = []
|
| 57 |
+
y_d_gs = []
|
| 58 |
+
fmap_rs = []
|
| 59 |
+
fmap_gs = []
|
| 60 |
+
|
| 61 |
+
for d in self.discriminators:
|
| 62 |
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
| 63 |
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
| 64 |
+
y_d_rs.append(y_d_r)
|
| 65 |
+
fmap_rs.append(fmap_r)
|
| 66 |
+
y_d_gs.append(y_d_g)
|
| 67 |
+
fmap_gs.append(fmap_g)
|
| 68 |
+
|
| 69 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class DiscriminatorR(nn.Module):
|
| 73 |
+
def __init__(
|
| 74 |
+
self,
|
| 75 |
+
window_length: int,
|
| 76 |
+
num_embeddings: Optional[int] = None,
|
| 77 |
+
channels: int = 32,
|
| 78 |
+
hop_factor: float = 0.25,
|
| 79 |
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
| 80 |
+
):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.window_length = window_length
|
| 83 |
+
self.hop_factor = hop_factor
|
| 84 |
+
self.spec_fn = Spectrogram(
|
| 85 |
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
| 86 |
+
)
|
| 87 |
+
n_fft = window_length // 2 + 1
|
| 88 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
| 89 |
+
self.bands = bands
|
| 90 |
+
convs = lambda: nn.ModuleList(
|
| 91 |
+
[
|
| 92 |
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
| 93 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
| 94 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
| 95 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
| 96 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
| 97 |
+
]
|
| 98 |
+
)
|
| 99 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
| 100 |
+
|
| 101 |
+
if num_embeddings is not None:
|
| 102 |
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
| 103 |
+
torch.nn.init.zeros_(self.emb.weight)
|
| 104 |
+
|
| 105 |
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
| 106 |
+
|
| 107 |
+
def spectrogram(self, x):
|
| 108 |
+
# Remove DC offset
|
| 109 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
| 110 |
+
# Peak normalize the volume of input audio
|
| 111 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
| 112 |
+
x = self.spec_fn(x)
|
| 113 |
+
x = torch.view_as_real(x)
|
| 114 |
+
x = rearrange(x, "b f t c -> b c t f")
|
| 115 |
+
# Split into bands
|
| 116 |
+
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
| 117 |
+
return x_bands
|
| 118 |
+
|
| 119 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
| 120 |
+
x_bands = self.spectrogram(x)
|
| 121 |
+
fmap = []
|
| 122 |
+
x = []
|
| 123 |
+
for band, stack in zip(x_bands, self.band_convs):
|
| 124 |
+
for i, layer in enumerate(stack):
|
| 125 |
+
band = layer(band)
|
| 126 |
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
| 127 |
+
if i > 0:
|
| 128 |
+
fmap.append(band)
|
| 129 |
+
x.append(band)
|
| 130 |
+
x = torch.cat(x, dim=-1)
|
| 131 |
+
if cond_embedding_id is not None:
|
| 132 |
+
emb = self.emb(cond_embedding_id)
|
| 133 |
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
| 134 |
+
else:
|
| 135 |
+
h = 0
|
| 136 |
+
x = self.conv_post(x)
|
| 137 |
+
fmap.append(x)
|
| 138 |
+
x += h
|
| 139 |
+
|
| 140 |
+
return x, fmap
|
cosyvoice/hifigan/f0_predictor.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from torch.nn.utils.parametrizations import weight_norm
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ConvRNNF0Predictor(nn.Module):
|
| 20 |
+
def __init__(self,
|
| 21 |
+
num_class: int = 1,
|
| 22 |
+
in_channels: int = 80,
|
| 23 |
+
cond_channels: int = 512
|
| 24 |
+
):
|
| 25 |
+
super().__init__()
|
| 26 |
+
|
| 27 |
+
self.num_class = num_class
|
| 28 |
+
self.condnet = nn.Sequential(
|
| 29 |
+
weight_norm(
|
| 30 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
| 31 |
+
),
|
| 32 |
+
nn.ELU(),
|
| 33 |
+
weight_norm(
|
| 34 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
| 35 |
+
),
|
| 36 |
+
nn.ELU(),
|
| 37 |
+
weight_norm(
|
| 38 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
| 39 |
+
),
|
| 40 |
+
nn.ELU(),
|
| 41 |
+
weight_norm(
|
| 42 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
| 43 |
+
),
|
| 44 |
+
nn.ELU(),
|
| 45 |
+
weight_norm(
|
| 46 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
| 47 |
+
),
|
| 48 |
+
nn.ELU(),
|
| 49 |
+
)
|
| 50 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
| 51 |
+
|
| 52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
x = self.condnet(x)
|
| 54 |
+
x = x.transpose(1, 2)
|
| 55 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
|
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""HIFI-GAN"""
|
| 16 |
+
|
| 17 |
+
from typing import Dict, Optional, List
|
| 18 |
+
import numpy as np
|
| 19 |
+
from scipy.signal import get_window
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from torch.nn import Conv1d
|
| 24 |
+
from torch.nn import ConvTranspose1d
|
| 25 |
+
from torch.nn.utils import remove_weight_norm
|
| 26 |
+
from torch.nn.utils.parametrizations import weight_norm
|
| 27 |
+
from torch.distributions.uniform import Uniform
|
| 28 |
+
|
| 29 |
+
from cosyvoice.transformer.activation import Snake
|
| 30 |
+
from cosyvoice.utils.common import get_padding
|
| 31 |
+
from cosyvoice.utils.common import init_weights
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
"""hifigan based generator implementation.
|
| 35 |
+
|
| 36 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
| 37 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
| 38 |
+
https://github.com/NVIDIA/BigVGAN
|
| 39 |
+
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class ResBlock(torch.nn.Module):
|
| 44 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
channels: int = 512,
|
| 48 |
+
kernel_size: int = 3,
|
| 49 |
+
dilations: List[int] = [1, 3, 5],
|
| 50 |
+
):
|
| 51 |
+
super(ResBlock, self).__init__()
|
| 52 |
+
self.convs1 = nn.ModuleList()
|
| 53 |
+
self.convs2 = nn.ModuleList()
|
| 54 |
+
|
| 55 |
+
for dilation in dilations:
|
| 56 |
+
self.convs1.append(
|
| 57 |
+
weight_norm(
|
| 58 |
+
Conv1d(
|
| 59 |
+
channels,
|
| 60 |
+
channels,
|
| 61 |
+
kernel_size,
|
| 62 |
+
1,
|
| 63 |
+
dilation=dilation,
|
| 64 |
+
padding=get_padding(kernel_size, dilation)
|
| 65 |
+
)
|
| 66 |
+
)
|
| 67 |
+
)
|
| 68 |
+
self.convs2.append(
|
| 69 |
+
weight_norm(
|
| 70 |
+
Conv1d(
|
| 71 |
+
channels,
|
| 72 |
+
channels,
|
| 73 |
+
kernel_size,
|
| 74 |
+
1,
|
| 75 |
+
dilation=1,
|
| 76 |
+
padding=get_padding(kernel_size, 1)
|
| 77 |
+
)
|
| 78 |
+
)
|
| 79 |
+
)
|
| 80 |
+
self.convs1.apply(init_weights)
|
| 81 |
+
self.convs2.apply(init_weights)
|
| 82 |
+
self.activations1 = nn.ModuleList([
|
| 83 |
+
Snake(channels, alpha_logscale=False)
|
| 84 |
+
for _ in range(len(self.convs1))
|
| 85 |
+
])
|
| 86 |
+
self.activations2 = nn.ModuleList([
|
| 87 |
+
Snake(channels, alpha_logscale=False)
|
| 88 |
+
for _ in range(len(self.convs2))
|
| 89 |
+
])
|
| 90 |
+
|
| 91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 92 |
+
for idx in range(len(self.convs1)):
|
| 93 |
+
xt = self.activations1[idx](x)
|
| 94 |
+
xt = self.convs1[idx](xt)
|
| 95 |
+
xt = self.activations2[idx](xt)
|
| 96 |
+
xt = self.convs2[idx](xt)
|
| 97 |
+
x = xt + x
|
| 98 |
+
return x
|
| 99 |
+
|
| 100 |
+
def remove_weight_norm(self):
|
| 101 |
+
for idx in range(len(self.convs1)):
|
| 102 |
+
remove_weight_norm(self.convs1[idx])
|
| 103 |
+
remove_weight_norm(self.convs2[idx])
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class SineGen(torch.nn.Module):
|
| 107 |
+
""" Definition of sine generator
|
| 108 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 109 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 110 |
+
voiced_threshold = 0,
|
| 111 |
+
flag_for_pulse=False)
|
| 112 |
+
samp_rate: sampling rate in Hz
|
| 113 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 114 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 115 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 116 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 117 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 118 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 119 |
+
segment is always sin(np.pi) or cos(0)
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
| 123 |
+
sine_amp=0.1, noise_std=0.003,
|
| 124 |
+
voiced_threshold=0):
|
| 125 |
+
super(SineGen, self).__init__()
|
| 126 |
+
self.sine_amp = sine_amp
|
| 127 |
+
self.noise_std = noise_std
|
| 128 |
+
self.harmonic_num = harmonic_num
|
| 129 |
+
self.sampling_rate = samp_rate
|
| 130 |
+
self.voiced_threshold = voiced_threshold
|
| 131 |
+
|
| 132 |
+
def _f02uv(self, f0):
|
| 133 |
+
# generate uv signal
|
| 134 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 135 |
+
return uv
|
| 136 |
+
|
| 137 |
+
@torch.no_grad()
|
| 138 |
+
def forward(self, f0):
|
| 139 |
+
"""
|
| 140 |
+
:param f0: [B, 1, sample_len], Hz
|
| 141 |
+
:return: [B, 1, sample_len]
|
| 142 |
+
"""
|
| 143 |
+
|
| 144 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
| 145 |
+
for i in range(self.harmonic_num + 1):
|
| 146 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
| 147 |
+
|
| 148 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
| 149 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
| 150 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
| 151 |
+
phase_vec[:, 0, :] = 0
|
| 152 |
+
|
| 153 |
+
# generate sine waveforms
|
| 154 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
| 155 |
+
|
| 156 |
+
# generate uv signal
|
| 157 |
+
uv = self._f02uv(f0)
|
| 158 |
+
|
| 159 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 160 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 161 |
+
# . for voiced regions is self.noise_std
|
| 162 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 163 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 164 |
+
|
| 165 |
+
# first: set the unvoiced part to 0 by uv
|
| 166 |
+
# then: additive noise
|
| 167 |
+
sine_waves = sine_waves * uv + noise
|
| 168 |
+
return sine_waves, uv, noise
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 172 |
+
""" SourceModule for hn-nsf
|
| 173 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 174 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 175 |
+
sampling_rate: sampling_rate in Hz
|
| 176 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 177 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 178 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 179 |
+
note that amplitude of noise in unvoiced is decided
|
| 180 |
+
by sine_amp
|
| 181 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 182 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 183 |
+
F0_sampled (batchsize, length, 1)
|
| 184 |
+
Sine_source (batchsize, length, 1)
|
| 185 |
+
noise_source (batchsize, length 1)
|
| 186 |
+
uv (batchsize, length, 1)
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 190 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 191 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 192 |
+
|
| 193 |
+
self.sine_amp = sine_amp
|
| 194 |
+
self.noise_std = add_noise_std
|
| 195 |
+
|
| 196 |
+
# to produce sine waveforms
|
| 197 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
| 198 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 199 |
+
|
| 200 |
+
# to merge source harmonics into a single excitation
|
| 201 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 202 |
+
self.l_tanh = torch.nn.Tanh()
|
| 203 |
+
|
| 204 |
+
def forward(self, x):
|
| 205 |
+
"""
|
| 206 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 207 |
+
F0_sampled (batchsize, length, 1)
|
| 208 |
+
Sine_source (batchsize, length, 1)
|
| 209 |
+
noise_source (batchsize, length 1)
|
| 210 |
+
"""
|
| 211 |
+
# source for harmonic branch
|
| 212 |
+
with torch.no_grad():
|
| 213 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
| 214 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
| 215 |
+
uv = uv.transpose(1, 2)
|
| 216 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 217 |
+
|
| 218 |
+
# source for noise branch, in the same shape as uv
|
| 219 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 220 |
+
return sine_merge, noise, uv
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class HiFTGenerator(nn.Module):
|
| 224 |
+
"""
|
| 225 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
| 226 |
+
https://arxiv.org/abs/2309.09493
|
| 227 |
+
"""
|
| 228 |
+
def __init__(
|
| 229 |
+
self,
|
| 230 |
+
in_channels: int = 80,
|
| 231 |
+
base_channels: int = 512,
|
| 232 |
+
nb_harmonics: int = 8,
|
| 233 |
+
sampling_rate: int = 22050,
|
| 234 |
+
nsf_alpha: float = 0.1,
|
| 235 |
+
nsf_sigma: float = 0.003,
|
| 236 |
+
nsf_voiced_threshold: float = 10,
|
| 237 |
+
upsample_rates: List[int] = [8, 8],
|
| 238 |
+
upsample_kernel_sizes: List[int] = [16, 16],
|
| 239 |
+
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
| 240 |
+
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
| 241 |
+
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 242 |
+
source_resblock_kernel_sizes: List[int] = [7, 11],
|
| 243 |
+
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
| 244 |
+
lrelu_slope: float = 0.1,
|
| 245 |
+
audio_limit: float = 0.99,
|
| 246 |
+
f0_predictor: torch.nn.Module = None,
|
| 247 |
+
):
|
| 248 |
+
super(HiFTGenerator, self).__init__()
|
| 249 |
+
|
| 250 |
+
self.out_channels = 1
|
| 251 |
+
self.nb_harmonics = nb_harmonics
|
| 252 |
+
self.sampling_rate = sampling_rate
|
| 253 |
+
self.istft_params = istft_params
|
| 254 |
+
self.lrelu_slope = lrelu_slope
|
| 255 |
+
self.audio_limit = audio_limit
|
| 256 |
+
|
| 257 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 258 |
+
self.num_upsamples = len(upsample_rates)
|
| 259 |
+
self.m_source = SourceModuleHnNSF(
|
| 260 |
+
sampling_rate=sampling_rate,
|
| 261 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
| 262 |
+
harmonic_num=nb_harmonics,
|
| 263 |
+
sine_amp=nsf_alpha,
|
| 264 |
+
add_noise_std=nsf_sigma,
|
| 265 |
+
voiced_threshod=nsf_voiced_threshold)
|
| 266 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
| 267 |
+
|
| 268 |
+
self.conv_pre = weight_norm(
|
| 269 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# Up
|
| 273 |
+
self.ups = nn.ModuleList()
|
| 274 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 275 |
+
self.ups.append(
|
| 276 |
+
weight_norm(
|
| 277 |
+
ConvTranspose1d(
|
| 278 |
+
base_channels // (2**i),
|
| 279 |
+
base_channels // (2**(i + 1)),
|
| 280 |
+
k,
|
| 281 |
+
u,
|
| 282 |
+
padding=(k - u) // 2,
|
| 283 |
+
)
|
| 284 |
+
)
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Down
|
| 288 |
+
self.source_downs = nn.ModuleList()
|
| 289 |
+
self.source_resblocks = nn.ModuleList()
|
| 290 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
| 291 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
| 292 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
| 293 |
+
if u == 1:
|
| 294 |
+
self.source_downs.append(
|
| 295 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
| 296 |
+
)
|
| 297 |
+
else:
|
| 298 |
+
self.source_downs.append(
|
| 299 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
self.source_resblocks.append(
|
| 303 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
self.resblocks = nn.ModuleList()
|
| 307 |
+
for i in range(len(self.ups)):
|
| 308 |
+
ch = base_channels // (2**(i + 1))
|
| 309 |
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 310 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
| 311 |
+
|
| 312 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
| 313 |
+
self.ups.apply(init_weights)
|
| 314 |
+
self.conv_post.apply(init_weights)
|
| 315 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
| 316 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
| 317 |
+
self.f0_predictor = f0_predictor
|
| 318 |
+
|
| 319 |
+
def remove_weight_norm(self):
|
| 320 |
+
print('Removing weight norm...')
|
| 321 |
+
for l in self.ups:
|
| 322 |
+
remove_weight_norm(l)
|
| 323 |
+
for l in self.resblocks:
|
| 324 |
+
l.remove_weight_norm()
|
| 325 |
+
remove_weight_norm(self.conv_pre)
|
| 326 |
+
remove_weight_norm(self.conv_post)
|
| 327 |
+
self.m_source.remove_weight_norm()
|
| 328 |
+
for l in self.source_downs:
|
| 329 |
+
remove_weight_norm(l)
|
| 330 |
+
for l in self.source_resblocks:
|
| 331 |
+
l.remove_weight_norm()
|
| 332 |
+
|
| 333 |
+
def _stft(self, x):
|
| 334 |
+
spec = torch.stft(
|
| 335 |
+
x,
|
| 336 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
| 337 |
+
return_complex=True)
|
| 338 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
| 339 |
+
return spec[..., 0], spec[..., 1]
|
| 340 |
+
|
| 341 |
+
def _istft(self, magnitude, phase):
|
| 342 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
| 343 |
+
real = magnitude * torch.cos(phase)
|
| 344 |
+
img = magnitude * torch.sin(phase)
|
| 345 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
| 346 |
+
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
| 347 |
+
return inverse_transform
|
| 348 |
+
|
| 349 |
+
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
| 350 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
| 351 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
| 352 |
+
|
| 353 |
+
x = self.conv_pre(x)
|
| 354 |
+
for i in range(self.num_upsamples):
|
| 355 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
| 356 |
+
x = self.ups[i](x)
|
| 357 |
+
|
| 358 |
+
if i == self.num_upsamples - 1:
|
| 359 |
+
x = self.reflection_pad(x)
|
| 360 |
+
|
| 361 |
+
# fusion
|
| 362 |
+
si = self.source_downs[i](s_stft)
|
| 363 |
+
si = self.source_resblocks[i](si)
|
| 364 |
+
x = x + si
|
| 365 |
+
|
| 366 |
+
xs = None
|
| 367 |
+
for j in range(self.num_kernels):
|
| 368 |
+
if xs is None:
|
| 369 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 370 |
+
else:
|
| 371 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 372 |
+
x = xs / self.num_kernels
|
| 373 |
+
|
| 374 |
+
x = F.leaky_relu(x)
|
| 375 |
+
x = self.conv_post(x)
|
| 376 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
| 377 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
| 378 |
+
|
| 379 |
+
x = self._istft(magnitude, phase)
|
| 380 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
| 381 |
+
return x
|
| 382 |
+
|
| 383 |
+
def forward(
|
| 384 |
+
self,
|
| 385 |
+
batch: dict,
|
| 386 |
+
device: torch.device,
|
| 387 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
| 388 |
+
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
| 389 |
+
# mel->f0
|
| 390 |
+
f0 = self.f0_predictor(speech_feat)
|
| 391 |
+
# f0->source
|
| 392 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 393 |
+
s, _, _ = self.m_source(s)
|
| 394 |
+
s = s.transpose(1, 2)
|
| 395 |
+
# mel+source->speech
|
| 396 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
| 397 |
+
return generated_speech, f0
|
| 398 |
+
|
| 399 |
+
@torch.inference_mode()
|
| 400 |
+
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
| 401 |
+
# mel->f0
|
| 402 |
+
f0 = self.f0_predictor(speech_feat)
|
| 403 |
+
# f0->source
|
| 404 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 405 |
+
s, _, _ = self.m_source(s)
|
| 406 |
+
s = s.transpose(1, 2)
|
| 407 |
+
# use cache_source to avoid glitch
|
| 408 |
+
if cache_source.shape[2] != 0:
|
| 409 |
+
s[:, :, :cache_source.shape[2]] = cache_source
|
| 410 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
| 411 |
+
return generated_speech, s
|
cosyvoice/hifigan/hifigan.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Optional
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
|
| 6 |
+
from cosyvoice.utils.losses import tpr_loss, mel_loss
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class HiFiGan(nn.Module):
|
| 10 |
+
def __init__(self, generator, discriminator, mel_spec_transform,
|
| 11 |
+
multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
|
| 12 |
+
tpr_loss_weight=1.0, tpr_loss_tau=0.04):
|
| 13 |
+
super(HiFiGan, self).__init__()
|
| 14 |
+
self.generator = generator
|
| 15 |
+
self.discriminator = discriminator
|
| 16 |
+
self.mel_spec_transform = mel_spec_transform
|
| 17 |
+
self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
|
| 18 |
+
self.feat_match_loss_weight = feat_match_loss_weight
|
| 19 |
+
self.tpr_loss_weight = tpr_loss_weight
|
| 20 |
+
self.tpr_loss_tau = tpr_loss_tau
|
| 21 |
+
|
| 22 |
+
def forward(
|
| 23 |
+
self,
|
| 24 |
+
batch: dict,
|
| 25 |
+
device: torch.device,
|
| 26 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
| 27 |
+
if batch['turn'] == 'generator':
|
| 28 |
+
return self.forward_generator(batch, device)
|
| 29 |
+
else:
|
| 30 |
+
return self.forward_discriminator(batch, device)
|
| 31 |
+
|
| 32 |
+
def forward_generator(self, batch, device):
|
| 33 |
+
real_speech = batch['speech'].to(device)
|
| 34 |
+
pitch_feat = batch['pitch_feat'].to(device)
|
| 35 |
+
# 1. calculate generator outputs
|
| 36 |
+
generated_speech, generated_f0 = self.generator(batch, device)
|
| 37 |
+
# 2. calculate discriminator outputs
|
| 38 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
| 39 |
+
# 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
|
| 40 |
+
loss_gen, _ = generator_loss(y_d_gs)
|
| 41 |
+
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
| 42 |
+
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
| 43 |
+
if self.tpr_loss_weight != 0:
|
| 44 |
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
| 45 |
+
else:
|
| 46 |
+
loss_tpr = torch.zeros(1).to(device)
|
| 47 |
+
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
| 48 |
+
loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
|
| 49 |
+
self.multi_mel_spectral_recon_loss_weight * loss_mel + \
|
| 50 |
+
self.tpr_loss_weight * loss_tpr + loss_f0
|
| 51 |
+
return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
|
| 52 |
+
|
| 53 |
+
def forward_discriminator(self, batch, device):
|
| 54 |
+
real_speech = batch['speech'].to(device)
|
| 55 |
+
# 1. calculate generator outputs
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
generated_speech, generated_f0 = self.generator(batch, device)
|
| 58 |
+
# 2. calculate discriminator outputs
|
| 59 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
| 60 |
+
# 3. calculate discriminator losses, tpr losses [Optional]
|
| 61 |
+
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
| 62 |
+
if self.tpr_loss_weight != 0:
|
| 63 |
+
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
| 64 |
+
else:
|
| 65 |
+
loss_tpr = torch.zeros(1).to(device)
|
| 66 |
+
loss = loss_disc + self.tpr_loss_weight * loss_tpr
|
| 67 |
+
return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
|
cosyvoice/llm/__pycache__/llm.cpython-310.pyc
ADDED
|
Binary file (11.8 kB). View file
|
|
|
cosyvoice/utils/class_utils.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright [2023-11-28] <sxc19@mails.tsinghua.edu.cn, Xingchen Song>
|
| 2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from cosyvoice.transformer.activation import Swish
|
| 18 |
+
from cosyvoice.transformer.subsampling import (
|
| 19 |
+
LinearNoSubsampling,
|
| 20 |
+
EmbedinigNoSubsampling,
|
| 21 |
+
Conv1dSubsampling2,
|
| 22 |
+
Conv2dSubsampling4,
|
| 23 |
+
Conv2dSubsampling6,
|
| 24 |
+
Conv2dSubsampling8,
|
| 25 |
+
)
|
| 26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
| 27 |
+
RelPositionalEncoding,
|
| 28 |
+
WhisperPositionalEncoding,
|
| 29 |
+
LearnablePositionalEncoding,
|
| 30 |
+
NoPositionalEncoding)
|
| 31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
| 32 |
+
RelPositionMultiHeadedAttention)
|
| 33 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
| 34 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
| 35 |
+
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
| 36 |
+
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
| 37 |
+
from cosyvoice.hifigan.generator import HiFTGenerator
|
| 38 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
| 42 |
+
"hardtanh": torch.nn.Hardtanh,
|
| 43 |
+
"tanh": torch.nn.Tanh,
|
| 44 |
+
"relu": torch.nn.ReLU,
|
| 45 |
+
"selu": torch.nn.SELU,
|
| 46 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
| 47 |
+
"gelu": torch.nn.GELU,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
| 51 |
+
"linear": LinearNoSubsampling,
|
| 52 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
| 53 |
+
"embed": EmbedinigNoSubsampling,
|
| 54 |
+
"conv1d2": Conv1dSubsampling2,
|
| 55 |
+
"conv2d": Conv2dSubsampling4,
|
| 56 |
+
"conv2d6": Conv2dSubsampling6,
|
| 57 |
+
"conv2d8": Conv2dSubsampling8,
|
| 58 |
+
'paraformer_dummy': torch.nn.Identity
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
COSYVOICE_EMB_CLASSES = {
|
| 62 |
+
"embed": PositionalEncoding,
|
| 63 |
+
"abs_pos": PositionalEncoding,
|
| 64 |
+
"rel_pos": RelPositionalEncoding,
|
| 65 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
| 66 |
+
"no_pos": NoPositionalEncoding,
|
| 67 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
| 68 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
| 72 |
+
"selfattn": MultiHeadedAttention,
|
| 73 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_model_type(configs):
|
| 78 |
+
# NOTE CosyVoice2Model inherits CosyVoiceModel
|
| 79 |
+
if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
| 80 |
+
return CosyVoiceModel
|
| 81 |
+
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
| 82 |
+
return CosyVoice2Model
|
| 83 |
+
raise TypeError('No valid model type found!')
|
cosyvoice/utils/common.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
| 2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
| 16 |
+
"""Unility functions for Transformer."""
|
| 17 |
+
|
| 18 |
+
import random
|
| 19 |
+
from typing import List
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
import torch
|
| 23 |
+
|
| 24 |
+
IGNORE_ID = -1
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
| 28 |
+
"""Perform padding for the list of tensors.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
| 32 |
+
pad_value (float): Value for padding.
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
Tensor: Padded tensor (B, Tmax, `*`).
|
| 36 |
+
|
| 37 |
+
Examples:
|
| 38 |
+
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
| 39 |
+
>>> x
|
| 40 |
+
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
| 41 |
+
>>> pad_list(x, 0)
|
| 42 |
+
tensor([[1., 1., 1., 1.],
|
| 43 |
+
[1., 1., 0., 0.],
|
| 44 |
+
[1., 0., 0., 0.]])
|
| 45 |
+
|
| 46 |
+
"""
|
| 47 |
+
max_len = max([len(item) for item in xs])
|
| 48 |
+
batchs = len(xs)
|
| 49 |
+
ndim = xs[0].ndim
|
| 50 |
+
if ndim == 1:
|
| 51 |
+
pad_res = torch.zeros(batchs,
|
| 52 |
+
max_len,
|
| 53 |
+
dtype=xs[0].dtype,
|
| 54 |
+
device=xs[0].device)
|
| 55 |
+
elif ndim == 2:
|
| 56 |
+
pad_res = torch.zeros(batchs,
|
| 57 |
+
max_len,
|
| 58 |
+
xs[0].shape[1],
|
| 59 |
+
dtype=xs[0].dtype,
|
| 60 |
+
device=xs[0].device)
|
| 61 |
+
elif ndim == 3:
|
| 62 |
+
pad_res = torch.zeros(batchs,
|
| 63 |
+
max_len,
|
| 64 |
+
xs[0].shape[1],
|
| 65 |
+
xs[0].shape[2],
|
| 66 |
+
dtype=xs[0].dtype,
|
| 67 |
+
device=xs[0].device)
|
| 68 |
+
else:
|
| 69 |
+
raise ValueError(f"Unsupported ndim: {ndim}")
|
| 70 |
+
pad_res.fill_(pad_value)
|
| 71 |
+
for i in range(batchs):
|
| 72 |
+
pad_res[i, :len(xs[i])] = xs[i]
|
| 73 |
+
return pad_res
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
| 77 |
+
ignore_label: int) -> torch.Tensor:
|
| 78 |
+
"""Calculate accuracy.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
| 82 |
+
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
| 83 |
+
ignore_label (int): Ignore label id.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
torch.Tensor: Accuracy value (0.0 - 1.0).
|
| 87 |
+
|
| 88 |
+
"""
|
| 89 |
+
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
| 90 |
+
pad_outputs.size(1)).argmax(2)
|
| 91 |
+
mask = pad_targets != ignore_label
|
| 92 |
+
numerator = torch.sum(
|
| 93 |
+
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
| 94 |
+
denominator = torch.sum(mask)
|
| 95 |
+
return (numerator / denominator).detach()
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_padding(kernel_size, dilation=1):
|
| 99 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 103 |
+
classname = m.__class__.__name__
|
| 104 |
+
if classname.find("Conv") != -1:
|
| 105 |
+
m.weight.data.normal_(mean, std)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# Repetition Aware Sampling in VALL-E 2
|
| 109 |
+
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
|
| 110 |
+
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
|
| 111 |
+
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
|
| 112 |
+
if rep_num >= win_size * tau_r:
|
| 113 |
+
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
|
| 114 |
+
return top_ids
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
| 118 |
+
prob, indices = [], []
|
| 119 |
+
cum_prob = 0.0
|
| 120 |
+
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
|
| 121 |
+
for i in range(len(sorted_idx)):
|
| 122 |
+
# sampling both top-p and numbers.
|
| 123 |
+
if cum_prob < top_p and len(prob) < top_k:
|
| 124 |
+
cum_prob += sorted_value[i]
|
| 125 |
+
prob.append(sorted_value[i])
|
| 126 |
+
indices.append(sorted_idx[i])
|
| 127 |
+
else:
|
| 128 |
+
break
|
| 129 |
+
prob = torch.tensor(prob).to(weighted_scores)
|
| 130 |
+
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
| 131 |
+
top_ids = indices[prob.multinomial(1, replacement=True)]
|
| 132 |
+
return top_ids
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
| 136 |
+
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
| 137 |
+
return top_ids
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def fade_in_out(fade_in_mel, fade_out_mel, window):
|
| 141 |
+
device = fade_in_mel.device
|
| 142 |
+
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
|
| 143 |
+
mel_overlap_len = int(window.shape[0] / 2)
|
| 144 |
+
if fade_in_mel.device == torch.device('cpu'):
|
| 145 |
+
fade_in_mel = fade_in_mel.clone()
|
| 146 |
+
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
| 147 |
+
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
| 148 |
+
return fade_in_mel.to(device)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def set_all_random_seed(seed):
|
| 152 |
+
random.seed(seed)
|
| 153 |
+
np.random.seed(seed)
|
| 154 |
+
torch.manual_seed(seed)
|
| 155 |
+
torch.cuda.manual_seed_all(seed)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
| 159 |
+
assert mask.dtype == torch.bool
|
| 160 |
+
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
| 161 |
+
mask = mask.to(dtype)
|
| 162 |
+
# attention mask bias
|
| 163 |
+
# NOTE(Mddct): torch.finfo jit issues
|
| 164 |
+
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
| 165 |
+
mask = (1.0 - mask) * -1.0e+10
|
| 166 |
+
return mask
|
cosyvoice/utils/executor.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
| 2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import logging
|
| 17 |
+
from contextlib import nullcontext
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.distributed as dist
|
| 22 |
+
|
| 23 |
+
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class Executor:
|
| 27 |
+
|
| 28 |
+
def __init__(self, gan: bool = False):
|
| 29 |
+
self.gan = gan
|
| 30 |
+
self.step = 0
|
| 31 |
+
self.epoch = 0
|
| 32 |
+
self.rank = int(os.environ.get('RANK', 0))
|
| 33 |
+
self.device = torch.device('cuda:{}'.format(self.rank))
|
| 34 |
+
|
| 35 |
+
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
|
| 36 |
+
''' Train one epoch
|
| 37 |
+
'''
|
| 38 |
+
|
| 39 |
+
lr = optimizer.param_groups[0]['lr']
|
| 40 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
| 41 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
| 42 |
+
' larger than before'.format(info_dict['accum_grad']))
|
| 43 |
+
# A context manager to be used in conjunction with an instance of
|
| 44 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
| 45 |
+
# with uneven inputs across participating processes.
|
| 46 |
+
model.train()
|
| 47 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
| 48 |
+
with model_context():
|
| 49 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
| 50 |
+
info_dict["tag"] = "TRAIN"
|
| 51 |
+
info_dict["step"] = self.step
|
| 52 |
+
info_dict["epoch"] = self.epoch
|
| 53 |
+
info_dict["batch_idx"] = batch_idx
|
| 54 |
+
if cosyvoice_join(group_join, info_dict):
|
| 55 |
+
break
|
| 56 |
+
|
| 57 |
+
# Disable gradient synchronizations across DDP processes.
|
| 58 |
+
# Within this context, gradients will be accumulated on module
|
| 59 |
+
# variables, which will later be synchronized.
|
| 60 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
| 61 |
+
context = model.no_sync
|
| 62 |
+
# Used for single gpu training and DDP gradient synchronization
|
| 63 |
+
# processes.
|
| 64 |
+
else:
|
| 65 |
+
context = nullcontext
|
| 66 |
+
|
| 67 |
+
with context():
|
| 68 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
| 69 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
| 70 |
+
|
| 71 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
| 72 |
+
log_per_step(writer, info_dict)
|
| 73 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
| 74 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
| 75 |
+
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
| 76 |
+
dist.barrier()
|
| 77 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
| 78 |
+
model.train()
|
| 79 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
| 80 |
+
self.step += 1
|
| 81 |
+
dist.barrier()
|
| 82 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
| 83 |
+
|
| 84 |
+
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
| 85 |
+
writer, info_dict, scaler, group_join):
|
| 86 |
+
''' Train one epoch
|
| 87 |
+
'''
|
| 88 |
+
|
| 89 |
+
lr = optimizer.param_groups[0]['lr']
|
| 90 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
| 91 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
| 92 |
+
' larger than before'.format(info_dict['accum_grad']))
|
| 93 |
+
# A context manager to be used in conjunction with an instance of
|
| 94 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
| 95 |
+
# with uneven inputs across participating processes.
|
| 96 |
+
model.train()
|
| 97 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
| 98 |
+
with model_context():
|
| 99 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
| 100 |
+
info_dict["tag"] = "TRAIN"
|
| 101 |
+
info_dict["step"] = self.step
|
| 102 |
+
info_dict["epoch"] = self.epoch
|
| 103 |
+
info_dict["batch_idx"] = batch_idx
|
| 104 |
+
if cosyvoice_join(group_join, info_dict):
|
| 105 |
+
break
|
| 106 |
+
|
| 107 |
+
# Disable gradient synchronizations across DDP processes.
|
| 108 |
+
# Within this context, gradients will be accumulated on module
|
| 109 |
+
# variables, which will later be synchronized.
|
| 110 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
| 111 |
+
context = model.no_sync
|
| 112 |
+
# Used for single gpu training and DDP gradient synchronization
|
| 113 |
+
# processes.
|
| 114 |
+
else:
|
| 115 |
+
context = nullcontext
|
| 116 |
+
|
| 117 |
+
with context():
|
| 118 |
+
batch_dict['turn'] = 'discriminator'
|
| 119 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
| 120 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
| 121 |
+
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
| 122 |
+
optimizer.zero_grad()
|
| 123 |
+
log_per_step(writer, info_dict)
|
| 124 |
+
with context():
|
| 125 |
+
batch_dict['turn'] = 'generator'
|
| 126 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
| 127 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
| 128 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
| 129 |
+
optimizer_d.zero_grad()
|
| 130 |
+
log_per_step(writer, info_dict)
|
| 131 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
| 132 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
| 133 |
+
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
| 134 |
+
dist.barrier()
|
| 135 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
| 136 |
+
model.train()
|
| 137 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
| 138 |
+
self.step += 1
|
| 139 |
+
dist.barrier()
|
| 140 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
| 141 |
+
|
| 142 |
+
@torch.inference_mode()
|
| 143 |
+
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
|
| 144 |
+
''' Cross validation on
|
| 145 |
+
'''
|
| 146 |
+
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
| 147 |
+
model.eval()
|
| 148 |
+
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
| 149 |
+
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
| 150 |
+
info_dict["tag"] = "CV"
|
| 151 |
+
info_dict["step"] = self.step
|
| 152 |
+
info_dict["epoch"] = self.epoch
|
| 153 |
+
info_dict["batch_idx"] = batch_idx
|
| 154 |
+
|
| 155 |
+
num_utts = len(batch_dict["utts"])
|
| 156 |
+
total_num_utts += num_utts
|
| 157 |
+
|
| 158 |
+
if self.gan is True:
|
| 159 |
+
batch_dict['turn'] = 'generator'
|
| 160 |
+
info_dict = batch_forward(model, batch_dict, None, info_dict)
|
| 161 |
+
|
| 162 |
+
for k, v in info_dict['loss_dict'].items():
|
| 163 |
+
if k not in total_loss_dict:
|
| 164 |
+
total_loss_dict[k] = []
|
| 165 |
+
total_loss_dict[k].append(v.item() * num_utts)
|
| 166 |
+
log_per_step(None, info_dict)
|
| 167 |
+
for k, v in total_loss_dict.items():
|
| 168 |
+
total_loss_dict[k] = sum(v) / total_num_utts
|
| 169 |
+
info_dict['loss_dict'] = total_loss_dict
|
| 170 |
+
log_per_save(writer, info_dict)
|
| 171 |
+
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
| 172 |
+
save_model(model, model_name, info_dict)
|
cosyvoice/utils/frontend_utils.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import re
|
| 16 |
+
import regex
|
| 17 |
+
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# whether contain chinese character
|
| 21 |
+
def contains_chinese(text):
|
| 22 |
+
return bool(chinese_char_pattern.search(text))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# replace special symbol
|
| 26 |
+
def replace_corner_mark(text):
|
| 27 |
+
text = text.replace('²', '平方')
|
| 28 |
+
text = text.replace('³', '立方')
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# remove meaningless symbol
|
| 33 |
+
def remove_bracket(text):
|
| 34 |
+
text = text.replace('(', '').replace(')', '')
|
| 35 |
+
text = text.replace('【', '').replace('】', '')
|
| 36 |
+
text = text.replace('`', '').replace('`', '')
|
| 37 |
+
text = text.replace("——", " ")
|
| 38 |
+
return text
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# spell Arabic numerals
|
| 42 |
+
def spell_out_number(text: str, inflect_parser):
|
| 43 |
+
new_text = []
|
| 44 |
+
st = None
|
| 45 |
+
for i, c in enumerate(text):
|
| 46 |
+
if not c.isdigit():
|
| 47 |
+
if st is not None:
|
| 48 |
+
num_str = inflect_parser.number_to_words(text[st: i])
|
| 49 |
+
new_text.append(num_str)
|
| 50 |
+
st = None
|
| 51 |
+
new_text.append(c)
|
| 52 |
+
else:
|
| 53 |
+
if st is None:
|
| 54 |
+
st = i
|
| 55 |
+
if st is not None and st < len(text):
|
| 56 |
+
num_str = inflect_parser.number_to_words(text[st:])
|
| 57 |
+
new_text.append(num_str)
|
| 58 |
+
return ''.join(new_text)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# split paragrah logic:
|
| 62 |
+
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
|
| 63 |
+
# 2. cal sentence len according to lang
|
| 64 |
+
# 3. split sentence according to puncatation
|
| 65 |
+
def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
|
| 66 |
+
def calc_utt_length(_text: str):
|
| 67 |
+
if lang == "zh":
|
| 68 |
+
return len(_text)
|
| 69 |
+
else:
|
| 70 |
+
return len(tokenize(_text))
|
| 71 |
+
|
| 72 |
+
def should_merge(_text: str):
|
| 73 |
+
if lang == "zh":
|
| 74 |
+
return len(_text) < merge_len
|
| 75 |
+
else:
|
| 76 |
+
return len(tokenize(_text)) < merge_len
|
| 77 |
+
|
| 78 |
+
if lang == "zh":
|
| 79 |
+
pounc = ['。', '?', '!', ';', ':', '、', '.', '?', '!', ';']
|
| 80 |
+
else:
|
| 81 |
+
pounc = ['.', '?', '!', ';', ':']
|
| 82 |
+
if comma_split:
|
| 83 |
+
pounc.extend([',', ','])
|
| 84 |
+
|
| 85 |
+
if text[-1] not in pounc:
|
| 86 |
+
if lang == "zh":
|
| 87 |
+
text += "。"
|
| 88 |
+
else:
|
| 89 |
+
text += "."
|
| 90 |
+
|
| 91 |
+
st = 0
|
| 92 |
+
utts = []
|
| 93 |
+
for i, c in enumerate(text):
|
| 94 |
+
if c in pounc:
|
| 95 |
+
if len(text[st: i]) > 0:
|
| 96 |
+
utts.append(text[st: i] + c)
|
| 97 |
+
if i + 1 < len(text) and text[i + 1] in ['"', '”']:
|
| 98 |
+
tmp = utts.pop(-1)
|
| 99 |
+
utts.append(tmp + text[i + 1])
|
| 100 |
+
st = i + 2
|
| 101 |
+
else:
|
| 102 |
+
st = i + 1
|
| 103 |
+
|
| 104 |
+
final_utts = []
|
| 105 |
+
cur_utt = ""
|
| 106 |
+
for utt in utts:
|
| 107 |
+
if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
|
| 108 |
+
final_utts.append(cur_utt)
|
| 109 |
+
cur_utt = ""
|
| 110 |
+
cur_utt = cur_utt + utt
|
| 111 |
+
if len(cur_utt) > 0:
|
| 112 |
+
if should_merge(cur_utt) and len(final_utts) != 0:
|
| 113 |
+
final_utts[-1] = final_utts[-1] + cur_utt
|
| 114 |
+
else:
|
| 115 |
+
final_utts.append(cur_utt)
|
| 116 |
+
|
| 117 |
+
return final_utts
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# remove blank between chinese character
|
| 121 |
+
def replace_blank(text: str):
|
| 122 |
+
out_str = []
|
| 123 |
+
for i, c in enumerate(text):
|
| 124 |
+
if c == " ":
|
| 125 |
+
if ((text[i + 1].isascii() and text[i + 1] != " ") and
|
| 126 |
+
(text[i - 1].isascii() and text[i - 1] != " ")):
|
| 127 |
+
out_str.append(c)
|
| 128 |
+
else:
|
| 129 |
+
out_str.append(c)
|
| 130 |
+
return "".join(out_str)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def is_only_punctuation(text):
|
| 134 |
+
# Regular expression: Match strings that consist only of punctuation marks or are empty.
|
| 135 |
+
punctuation_pattern = r'^[\p{P}\p{S}]*$'
|
| 136 |
+
return bool(regex.fullmatch(punctuation_pattern, text))
|
cosyvoice/utils/mask.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2019 Shigeki Karita
|
| 2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
| 3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from cosyvoice.utils.file_utils import logging
|
| 19 |
+
'''
|
| 20 |
+
def subsequent_mask(
|
| 21 |
+
size: int,
|
| 22 |
+
device: torch.device = torch.device("cpu"),
|
| 23 |
+
) -> torch.Tensor:
|
| 24 |
+
"""Create mask for subsequent steps (size, size).
|
| 25 |
+
|
| 26 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
| 27 |
+
This means the current step could only do attention with its left steps.
|
| 28 |
+
|
| 29 |
+
In encoder, fully attention is used when streaming is not necessary and
|
| 30 |
+
the sequence is not long. In this case, no attention mask is needed.
|
| 31 |
+
|
| 32 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
| 33 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
size (int): size of mask
|
| 37 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
| 38 |
+
dtype (torch.device): result dtype
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
torch.Tensor: mask
|
| 42 |
+
|
| 43 |
+
Examples:
|
| 44 |
+
>>> subsequent_mask(3)
|
| 45 |
+
[[1, 0, 0],
|
| 46 |
+
[1, 1, 0],
|
| 47 |
+
[1, 1, 1]]
|
| 48 |
+
"""
|
| 49 |
+
ret = torch.ones(size, size, device=device, dtype=torch.bool)
|
| 50 |
+
return torch.tril(ret)
|
| 51 |
+
'''
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def subsequent_mask(
|
| 55 |
+
size: int,
|
| 56 |
+
device: torch.device = torch.device("cpu"),
|
| 57 |
+
) -> torch.Tensor:
|
| 58 |
+
"""Create mask for subsequent steps (size, size).
|
| 59 |
+
|
| 60 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
| 61 |
+
This means the current step could only do attention with its left steps.
|
| 62 |
+
|
| 63 |
+
In encoder, fully attention is used when streaming is not necessary and
|
| 64 |
+
the sequence is not long. In this case, no attention mask is needed.
|
| 65 |
+
|
| 66 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
| 67 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
size (int): size of mask
|
| 71 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
| 72 |
+
dtype (torch.device): result dtype
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
torch.Tensor: mask
|
| 76 |
+
|
| 77 |
+
Examples:
|
| 78 |
+
>>> subsequent_mask(3)
|
| 79 |
+
[[1, 0, 0],
|
| 80 |
+
[1, 1, 0],
|
| 81 |
+
[1, 1, 1]]
|
| 82 |
+
"""
|
| 83 |
+
arange = torch.arange(size, device=device)
|
| 84 |
+
mask = arange.expand(size, size)
|
| 85 |
+
arange = arange.unsqueeze(-1)
|
| 86 |
+
mask = mask <= arange
|
| 87 |
+
return mask
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def subsequent_chunk_mask_deprecated(
|
| 91 |
+
size: int,
|
| 92 |
+
chunk_size: int,
|
| 93 |
+
num_left_chunks: int = -1,
|
| 94 |
+
device: torch.device = torch.device("cpu"),
|
| 95 |
+
) -> torch.Tensor:
|
| 96 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
| 97 |
+
this is for streaming encoder
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
size (int): size of mask
|
| 101 |
+
chunk_size (int): size of chunk
|
| 102 |
+
num_left_chunks (int): number of left chunks
|
| 103 |
+
<0: use full chunk
|
| 104 |
+
>=0: use num_left_chunks
|
| 105 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
torch.Tensor: mask
|
| 109 |
+
|
| 110 |
+
Examples:
|
| 111 |
+
>>> subsequent_chunk_mask(4, 2)
|
| 112 |
+
[[1, 1, 0, 0],
|
| 113 |
+
[1, 1, 0, 0],
|
| 114 |
+
[1, 1, 1, 1],
|
| 115 |
+
[1, 1, 1, 1]]
|
| 116 |
+
"""
|
| 117 |
+
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
| 118 |
+
for i in range(size):
|
| 119 |
+
if num_left_chunks < 0:
|
| 120 |
+
start = 0
|
| 121 |
+
else:
|
| 122 |
+
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
| 123 |
+
ending = min((i // chunk_size + 1) * chunk_size, size)
|
| 124 |
+
ret[i, start:ending] = True
|
| 125 |
+
return ret
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def subsequent_chunk_mask(
|
| 129 |
+
size: int,
|
| 130 |
+
chunk_size: int,
|
| 131 |
+
num_left_chunks: int = -1,
|
| 132 |
+
device: torch.device = torch.device("cpu"),
|
| 133 |
+
) -> torch.Tensor:
|
| 134 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
| 135 |
+
this is for streaming encoder
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
size (int): size of mask
|
| 139 |
+
chunk_size (int): size of chunk
|
| 140 |
+
num_left_chunks (int): number of left chunks
|
| 141 |
+
<0: use full chunk
|
| 142 |
+
>=0: use num_left_chunks
|
| 143 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
torch.Tensor: mask
|
| 147 |
+
|
| 148 |
+
Examples:
|
| 149 |
+
>>> subsequent_chunk_mask(4, 2)
|
| 150 |
+
[[1, 1, 0, 0],
|
| 151 |
+
[1, 1, 0, 0],
|
| 152 |
+
[1, 1, 1, 1],
|
| 153 |
+
[1, 1, 1, 1]]
|
| 154 |
+
"""
|
| 155 |
+
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
| 156 |
+
# actually this is not needed after we have inference cache implemented, will remove it later
|
| 157 |
+
pos_idx = torch.arange(size, device=device)
|
| 158 |
+
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
| 159 |
+
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
| 160 |
+
return ret
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def add_optional_chunk_mask(xs: torch.Tensor,
|
| 164 |
+
masks: torch.Tensor,
|
| 165 |
+
use_dynamic_chunk: bool,
|
| 166 |
+
use_dynamic_left_chunk: bool,
|
| 167 |
+
decoding_chunk_size: int,
|
| 168 |
+
static_chunk_size: int,
|
| 169 |
+
num_decoding_left_chunks: int,
|
| 170 |
+
enable_full_context: bool = True):
|
| 171 |
+
""" Apply optional mask for encoder.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
xs (torch.Tensor): padded input, (B, L, D), L for max length
|
| 175 |
+
mask (torch.Tensor): mask for xs, (B, 1, L)
|
| 176 |
+
use_dynamic_chunk (bool): whether to use dynamic chunk or not
|
| 177 |
+
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
|
| 178 |
+
training.
|
| 179 |
+
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
|
| 180 |
+
0: default for training, use random dynamic chunk.
|
| 181 |
+
<0: for decoding, use full chunk.
|
| 182 |
+
>0: for decoding, use fixed chunk size as set.
|
| 183 |
+
static_chunk_size (int): chunk size for static chunk training/decoding
|
| 184 |
+
if it's greater than 0, if use_dynamic_chunk is true,
|
| 185 |
+
this parameter will be ignored
|
| 186 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
| 187 |
+
the chunk size is decoding_chunk_size.
|
| 188 |
+
>=0: use num_decoding_left_chunks
|
| 189 |
+
<0: use all left chunks
|
| 190 |
+
enable_full_context (bool):
|
| 191 |
+
True: chunk size is either [1, 25] or full context(max_len)
|
| 192 |
+
False: chunk size ~ U[1, 25]
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
torch.Tensor: chunk mask of the input xs.
|
| 196 |
+
"""
|
| 197 |
+
# Whether to use chunk mask or not
|
| 198 |
+
if use_dynamic_chunk:
|
| 199 |
+
max_len = xs.size(1)
|
| 200 |
+
if decoding_chunk_size < 0:
|
| 201 |
+
chunk_size = max_len
|
| 202 |
+
num_left_chunks = -1
|
| 203 |
+
elif decoding_chunk_size > 0:
|
| 204 |
+
chunk_size = decoding_chunk_size
|
| 205 |
+
num_left_chunks = num_decoding_left_chunks
|
| 206 |
+
else:
|
| 207 |
+
# chunk size is either [1, 25] or full context(max_len).
|
| 208 |
+
# Since we use 4 times subsampling and allow up to 1s(100 frames)
|
| 209 |
+
# delay, the maximum frame is 100 / 4 = 25.
|
| 210 |
+
chunk_size = torch.randint(1, max_len, (1, )).item()
|
| 211 |
+
num_left_chunks = -1
|
| 212 |
+
if chunk_size > max_len // 2 and enable_full_context:
|
| 213 |
+
chunk_size = max_len
|
| 214 |
+
else:
|
| 215 |
+
chunk_size = chunk_size % 25 + 1
|
| 216 |
+
if use_dynamic_left_chunk:
|
| 217 |
+
max_left_chunks = (max_len - 1) // chunk_size
|
| 218 |
+
num_left_chunks = torch.randint(0, max_left_chunks,
|
| 219 |
+
(1, )).item()
|
| 220 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
|
| 221 |
+
num_left_chunks,
|
| 222 |
+
xs.device) # (L, L)
|
| 223 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
| 224 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
| 225 |
+
elif static_chunk_size > 0:
|
| 226 |
+
num_left_chunks = num_decoding_left_chunks
|
| 227 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
|
| 228 |
+
num_left_chunks,
|
| 229 |
+
xs.device) # (L, L)
|
| 230 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
| 231 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
| 232 |
+
else:
|
| 233 |
+
chunk_masks = masks
|
| 234 |
+
assert chunk_masks.dtype == torch.bool
|
| 235 |
+
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
| 236 |
+
logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
| 237 |
+
chunk_masks[chunk_masks.sum(dim=-1)==0] = True
|
| 238 |
+
return chunk_masks
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
| 242 |
+
"""Make mask tensor containing indices of padded part.
|
| 243 |
+
|
| 244 |
+
See description of make_non_pad_mask.
|
| 245 |
+
|
| 246 |
+
Args:
|
| 247 |
+
lengths (torch.Tensor): Batch of lengths (B,).
|
| 248 |
+
Returns:
|
| 249 |
+
torch.Tensor: Mask tensor containing indices of padded part.
|
| 250 |
+
|
| 251 |
+
Examples:
|
| 252 |
+
>>> lengths = [5, 3, 2]
|
| 253 |
+
>>> make_pad_mask(lengths)
|
| 254 |
+
masks = [[0, 0, 0, 0 ,0],
|
| 255 |
+
[0, 0, 0, 1, 1],
|
| 256 |
+
[0, 0, 1, 1, 1]]
|
| 257 |
+
"""
|
| 258 |
+
batch_size = lengths.size(0)
|
| 259 |
+
max_len = max_len if max_len > 0 else lengths.max().item()
|
| 260 |
+
seq_range = torch.arange(0,
|
| 261 |
+
max_len,
|
| 262 |
+
dtype=torch.int64,
|
| 263 |
+
device=lengths.device)
|
| 264 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
| 265 |
+
seq_length_expand = lengths.unsqueeze(-1)
|
| 266 |
+
mask = seq_range_expand >= seq_length_expand
|
| 267 |
+
return mask
|
cosyvoice/utils/scheduler.py
ADDED
|
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
| 2 |
+
# 2022 Ximalaya Inc (Yuguang Yang)
|
| 3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
| 17 |
+
# NeMo(https://github.com/NVIDIA/NeMo)
|
| 18 |
+
|
| 19 |
+
from typing import Union
|
| 20 |
+
|
| 21 |
+
import math
|
| 22 |
+
import warnings
|
| 23 |
+
import torch
|
| 24 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class WarmupLR(_LRScheduler):
|
| 28 |
+
"""The WarmupLR scheduler
|
| 29 |
+
|
| 30 |
+
This scheduler is almost same as NoamLR Scheduler except for following
|
| 31 |
+
difference:
|
| 32 |
+
|
| 33 |
+
NoamLR:
|
| 34 |
+
lr = optimizer.lr * model_size ** -0.5
|
| 35 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
| 36 |
+
WarmupLR:
|
| 37 |
+
lr = optimizer.lr * warmup_step ** 0.5
|
| 38 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
| 39 |
+
|
| 40 |
+
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
| 41 |
+
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
optimizer: torch.optim.Optimizer,
|
| 47 |
+
warmup_steps: Union[int, float] = 25000,
|
| 48 |
+
last_epoch: int = -1,
|
| 49 |
+
):
|
| 50 |
+
self.warmup_steps = warmup_steps
|
| 51 |
+
|
| 52 |
+
# __init__() must be invoked before setting field
|
| 53 |
+
# because step() is also invoked in __init__()
|
| 54 |
+
super().__init__(optimizer, last_epoch)
|
| 55 |
+
|
| 56 |
+
def __repr__(self):
|
| 57 |
+
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
| 58 |
+
|
| 59 |
+
def get_lr(self):
|
| 60 |
+
step_num = self.last_epoch + 1
|
| 61 |
+
if self.warmup_steps == 0:
|
| 62 |
+
return [lr * step_num**-0.5 for lr in self.base_lrs]
|
| 63 |
+
else:
|
| 64 |
+
return [
|
| 65 |
+
lr * self.warmup_steps**0.5 *
|
| 66 |
+
min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
| 67 |
+
for lr in self.base_lrs
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
def set_step(self, step: int):
|
| 71 |
+
self.last_epoch = step
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class WarmupPolicy(_LRScheduler):
|
| 75 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
| 76 |
+
All arguments should be passed as kwargs for clarity,
|
| 77 |
+
Args:
|
| 78 |
+
warmup_steps: Number of training steps in warmup stage
|
| 79 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
| 80 |
+
max_steps: Total number of steps while training or `None` for
|
| 81 |
+
infinite training
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(self,
|
| 85 |
+
optimizer,
|
| 86 |
+
*,
|
| 87 |
+
warmup_steps=None,
|
| 88 |
+
warmup_ratio=None,
|
| 89 |
+
max_steps=None,
|
| 90 |
+
min_lr=0.0,
|
| 91 |
+
last_epoch=-1):
|
| 92 |
+
assert not (warmup_steps is not None and warmup_ratio is not None),\
|
| 93 |
+
"Either use particular number of step or ratio"
|
| 94 |
+
assert warmup_ratio is None or max_steps is not None, \
|
| 95 |
+
"If there is a ratio, there should be a total steps"
|
| 96 |
+
|
| 97 |
+
# It is necessary to assign all attributes *before* __init__,
|
| 98 |
+
# as class is wrapped by an inner class.
|
| 99 |
+
self.max_steps = max_steps
|
| 100 |
+
if warmup_steps is not None:
|
| 101 |
+
self.warmup_steps = warmup_steps
|
| 102 |
+
elif warmup_ratio is not None:
|
| 103 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
| 104 |
+
else:
|
| 105 |
+
self.warmup_steps = 0
|
| 106 |
+
|
| 107 |
+
self.min_lr = min_lr
|
| 108 |
+
super().__init__(optimizer, last_epoch)
|
| 109 |
+
|
| 110 |
+
def get_lr(self):
|
| 111 |
+
if not self._get_lr_called_within_step:
|
| 112 |
+
warnings.warn(
|
| 113 |
+
"To get the last learning rate computed "
|
| 114 |
+
"by the scheduler, please use `get_last_lr()`.",
|
| 115 |
+
UserWarning,
|
| 116 |
+
stacklevel=2)
|
| 117 |
+
|
| 118 |
+
step = self.last_epoch
|
| 119 |
+
|
| 120 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
| 121 |
+
return self._get_warmup_lr(step)
|
| 122 |
+
|
| 123 |
+
if step > self.max_steps:
|
| 124 |
+
return [self.min_lr for _ in self.base_lrs]
|
| 125 |
+
|
| 126 |
+
return self._get_lr(step)
|
| 127 |
+
|
| 128 |
+
def _get_warmup_lr(self, step):
|
| 129 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
| 130 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
| 131 |
+
|
| 132 |
+
def _get_lr(self, step):
|
| 133 |
+
"""Simple const lr policy"""
|
| 134 |
+
return self.base_lrs
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class SquareRootConstantPolicy(_LRScheduler):
|
| 138 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
| 139 |
+
All arguments should be passed as kwargs for clarity,
|
| 140 |
+
Args:
|
| 141 |
+
warmup_steps: Number of training steps in warmup stage
|
| 142 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
| 143 |
+
max_steps: Total number of steps while training or `None` for
|
| 144 |
+
infinite training
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
def __init__(self,
|
| 148 |
+
optimizer,
|
| 149 |
+
*,
|
| 150 |
+
constant_steps=None,
|
| 151 |
+
constant_ratio=None,
|
| 152 |
+
max_steps=None,
|
| 153 |
+
min_lr=0.0,
|
| 154 |
+
last_epoch=-1):
|
| 155 |
+
assert not (constant_steps is not None
|
| 156 |
+
and constant_ratio is not None), \
|
| 157 |
+
"Either use particular number of step or ratio"
|
| 158 |
+
assert constant_ratio is None or max_steps is not None, \
|
| 159 |
+
"If there is a ratio, there should be a total steps"
|
| 160 |
+
|
| 161 |
+
# It is necessary to assign all attributes *before* __init__,
|
| 162 |
+
# as class is wrapped by an inner class.
|
| 163 |
+
self.max_steps = max_steps
|
| 164 |
+
if constant_steps is not None:
|
| 165 |
+
self.constant_steps = constant_steps
|
| 166 |
+
elif constant_ratio is not None:
|
| 167 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
| 168 |
+
else:
|
| 169 |
+
self.constant_steps = 0
|
| 170 |
+
|
| 171 |
+
self.constant_lr = 1 / (constant_steps**0.5)
|
| 172 |
+
self.min_lr = min_lr
|
| 173 |
+
super().__init__(optimizer, last_epoch)
|
| 174 |
+
|
| 175 |
+
def get_lr(self):
|
| 176 |
+
if not self._get_lr_called_within_step:
|
| 177 |
+
warnings.warn(
|
| 178 |
+
"To get the last learning rate computed "
|
| 179 |
+
"by the scheduler, please use `get_last_lr()`.",
|
| 180 |
+
UserWarning,
|
| 181 |
+
stacklevel=2)
|
| 182 |
+
|
| 183 |
+
step = self.last_epoch
|
| 184 |
+
|
| 185 |
+
if step <= self.constant_steps:
|
| 186 |
+
return [self.constant_lr for _ in self.base_lrs]
|
| 187 |
+
|
| 188 |
+
if step > self.max_steps:
|
| 189 |
+
return [self.min_lr for _ in self.base_lrs]
|
| 190 |
+
|
| 191 |
+
return self._get_lr(step)
|
| 192 |
+
|
| 193 |
+
def _get_lr(self, step):
|
| 194 |
+
"""Simple const lr policy"""
|
| 195 |
+
return self.base_lrs
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class WarmupHoldPolicy(WarmupPolicy):
|
| 199 |
+
"""Variant of WarmupPolicy which maintains high
|
| 200 |
+
learning rate for a defined number of steps.
|
| 201 |
+
All arguments should be passed as kwargs for clarity,
|
| 202 |
+
Args:
|
| 203 |
+
warmup_steps: Number of training steps in warmup stage
|
| 204 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
| 205 |
+
hold_steps: Number of training steps to
|
| 206 |
+
hold the learning rate after warm up
|
| 207 |
+
hold_ratio: Ratio of hold steps to total steps
|
| 208 |
+
max_steps: Total number of steps while training or `None` for
|
| 209 |
+
infinite training
|
| 210 |
+
"""
|
| 211 |
+
|
| 212 |
+
def __init__(
|
| 213 |
+
self,
|
| 214 |
+
optimizer,
|
| 215 |
+
*,
|
| 216 |
+
warmup_steps=None,
|
| 217 |
+
warmup_ratio=None,
|
| 218 |
+
hold_steps=None,
|
| 219 |
+
hold_ratio=None,
|
| 220 |
+
max_steps=None,
|
| 221 |
+
min_lr=0.0,
|
| 222 |
+
last_epoch=-1,
|
| 223 |
+
):
|
| 224 |
+
assert not (hold_steps is not None and hold_ratio is not None), \
|
| 225 |
+
"Either use particular number of step or ratio"
|
| 226 |
+
assert hold_ratio is None or max_steps is not None, \
|
| 227 |
+
"If there is a ratio, there should be a total steps"
|
| 228 |
+
|
| 229 |
+
self.min_lr = min_lr
|
| 230 |
+
self._last_warmup_lr = 0.0
|
| 231 |
+
|
| 232 |
+
# Necessary to duplicate as class attributes are hidden in inner class
|
| 233 |
+
self.max_steps = max_steps
|
| 234 |
+
if warmup_steps is not None:
|
| 235 |
+
self.warmup_steps = warmup_steps
|
| 236 |
+
elif warmup_ratio is not None:
|
| 237 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
| 238 |
+
else:
|
| 239 |
+
self.warmup_steps = 0
|
| 240 |
+
|
| 241 |
+
if hold_steps is not None:
|
| 242 |
+
self.hold_steps = hold_steps + self.warmup_steps
|
| 243 |
+
elif hold_ratio is not None:
|
| 244 |
+
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
|
| 245 |
+
else:
|
| 246 |
+
self.hold_steps = 0
|
| 247 |
+
|
| 248 |
+
super().__init__(
|
| 249 |
+
optimizer,
|
| 250 |
+
warmup_steps=warmup_steps,
|
| 251 |
+
warmup_ratio=warmup_ratio,
|
| 252 |
+
max_steps=max_steps,
|
| 253 |
+
last_epoch=last_epoch,
|
| 254 |
+
min_lr=min_lr,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
def get_lr(self):
|
| 258 |
+
if not self._get_lr_called_within_step:
|
| 259 |
+
warnings.warn(
|
| 260 |
+
"To get the last learning rate computed by the scheduler,"
|
| 261 |
+
" "
|
| 262 |
+
"please use `get_last_lr()`.",
|
| 263 |
+
UserWarning,
|
| 264 |
+
stacklevel=2)
|
| 265 |
+
|
| 266 |
+
step = self.last_epoch
|
| 267 |
+
|
| 268 |
+
# Warmup phase
|
| 269 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
| 270 |
+
return self._get_warmup_lr(step)
|
| 271 |
+
|
| 272 |
+
# Hold phase
|
| 273 |
+
if (step >= self.warmup_steps) and (step < self.hold_steps):
|
| 274 |
+
return self.base_lrs
|
| 275 |
+
|
| 276 |
+
if step > self.max_steps:
|
| 277 |
+
return [self.min_lr for _ in self.base_lrs]
|
| 278 |
+
|
| 279 |
+
return self._get_lr(step)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class WarmupAnnealHoldPolicy(_LRScheduler):
|
| 283 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
| 284 |
+
All arguments should be passed as kwargs for clarity,
|
| 285 |
+
Args:
|
| 286 |
+
warmup_steps: Number of training steps in warmup stage
|
| 287 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
| 288 |
+
max_steps: Total number of steps while training or `None` for
|
| 289 |
+
infinite training
|
| 290 |
+
min_lr: Minimum lr to hold the learning rate after decay at.
|
| 291 |
+
constant_steps: Number of steps to keep lr constant at.
|
| 292 |
+
constant_ratio: Ratio of steps to keep lr constant.
|
| 293 |
+
"""
|
| 294 |
+
|
| 295 |
+
def __init__(
|
| 296 |
+
self,
|
| 297 |
+
optimizer,
|
| 298 |
+
*,
|
| 299 |
+
warmup_steps=None,
|
| 300 |
+
warmup_ratio=None,
|
| 301 |
+
constant_steps=None,
|
| 302 |
+
constant_ratio=None,
|
| 303 |
+
max_steps=None,
|
| 304 |
+
min_lr=0.0,
|
| 305 |
+
last_epoch=-1,
|
| 306 |
+
):
|
| 307 |
+
assert not (warmup_steps is not None
|
| 308 |
+
and warmup_ratio is not None), \
|
| 309 |
+
"Either use particular number of step or ratio"
|
| 310 |
+
assert not (constant_steps is not None
|
| 311 |
+
and constant_ratio is not None), \
|
| 312 |
+
"Either use constant_steps or constant_ratio"
|
| 313 |
+
assert warmup_ratio is None or max_steps is not None, \
|
| 314 |
+
"If there is a ratio, there should be a total steps"
|
| 315 |
+
|
| 316 |
+
# It is necessary to assign all attributes *before* __init__,
|
| 317 |
+
# as class is wrapped by an inner class.
|
| 318 |
+
self.max_steps = max_steps
|
| 319 |
+
|
| 320 |
+
if warmup_steps is not None:
|
| 321 |
+
self.warmup_steps = warmup_steps
|
| 322 |
+
elif warmup_ratio is not None:
|
| 323 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
| 324 |
+
else:
|
| 325 |
+
self.warmup_steps = 0
|
| 326 |
+
|
| 327 |
+
if constant_steps is not None:
|
| 328 |
+
self.constant_steps = constant_steps
|
| 329 |
+
elif constant_ratio is not None:
|
| 330 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
| 331 |
+
else:
|
| 332 |
+
self.constant_steps = 0
|
| 333 |
+
|
| 334 |
+
self.decay_steps = max_steps - (self.constant_steps +
|
| 335 |
+
self.warmup_steps)
|
| 336 |
+
|
| 337 |
+
self.min_lr = min_lr
|
| 338 |
+
super().__init__(optimizer, last_epoch)
|
| 339 |
+
|
| 340 |
+
def get_lr(self):
|
| 341 |
+
if not self._get_lr_called_within_step:
|
| 342 |
+
warnings.warn(
|
| 343 |
+
"To get the last learning rate computed "
|
| 344 |
+
"by the scheduler, please use `get_last_lr()`.",
|
| 345 |
+
UserWarning,
|
| 346 |
+
stacklevel=2)
|
| 347 |
+
|
| 348 |
+
step = self.last_epoch
|
| 349 |
+
|
| 350 |
+
# Warmup steps
|
| 351 |
+
if self.warmup_steps > 0 and step <= self.warmup_steps:
|
| 352 |
+
return self._get_warmup_lr(step)
|
| 353 |
+
|
| 354 |
+
# Constant steps after warmup and decay
|
| 355 |
+
if self.constant_steps > 0 and (
|
| 356 |
+
self.warmup_steps + self.decay_steps) < step <= self.max_steps:
|
| 357 |
+
return self._get_constant_lr(step)
|
| 358 |
+
|
| 359 |
+
# Min lr after max steps of updates
|
| 360 |
+
if step > self.max_steps:
|
| 361 |
+
return [self.min_lr for _ in self.base_lrs]
|
| 362 |
+
|
| 363 |
+
return self._get_lr(step)
|
| 364 |
+
|
| 365 |
+
def _get_warmup_lr(self, step):
|
| 366 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
| 367 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
| 368 |
+
|
| 369 |
+
def _get_constant_lr(self, step):
|
| 370 |
+
return [self.min_lr for _ in self.base_lrs]
|
| 371 |
+
|
| 372 |
+
def _get_lr(self, step):
|
| 373 |
+
"""Simple const lr policy"""
|
| 374 |
+
return self.base_lrs
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
|
| 378 |
+
mult = ((max_steps - step) / max_steps)**0.5
|
| 379 |
+
out_lr = initial_lr * mult
|
| 380 |
+
out_lr = max(out_lr, min_lr)
|
| 381 |
+
return out_lr
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def _square_annealing(initial_lr, step, max_steps, min_lr):
|
| 385 |
+
mult = ((max_steps - step) / max_steps)**2
|
| 386 |
+
out_lr = initial_lr * mult
|
| 387 |
+
out_lr = max(out_lr, min_lr)
|
| 388 |
+
return out_lr
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
|
| 392 |
+
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
|
| 393 |
+
out_lr = (initial_lr - min_lr) * mult + min_lr
|
| 394 |
+
return out_lr
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
|
| 398 |
+
decay_steps, min_lr):
|
| 399 |
+
assert max_lr > min_lr
|
| 400 |
+
# Use linear warmup for the initial part.
|
| 401 |
+
if warmup_steps > 0 and step <= warmup_steps:
|
| 402 |
+
return max_lr * float(step) / float(warmup_steps)
|
| 403 |
+
|
| 404 |
+
# For any steps larger than `decay_steps`, use `min_lr`.
|
| 405 |
+
if step > warmup_steps + decay_steps:
|
| 406 |
+
return min_lr
|
| 407 |
+
|
| 408 |
+
# If we are done with the warmup period, use the decay style.
|
| 409 |
+
num_steps_ = step - warmup_steps
|
| 410 |
+
decay_steps_ = decay_steps
|
| 411 |
+
decay_ratio = float(num_steps_) / float(decay_steps_)
|
| 412 |
+
assert decay_ratio >= 0.0
|
| 413 |
+
assert decay_ratio <= 1.0
|
| 414 |
+
delta_lr = max_lr - min_lr
|
| 415 |
+
|
| 416 |
+
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
| 417 |
+
|
| 418 |
+
return min_lr + coeff * delta_lr
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
|
| 422 |
+
if cycle:
|
| 423 |
+
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
|
| 424 |
+
decay_steps *= multiplier
|
| 425 |
+
else:
|
| 426 |
+
step = min(step, decay_steps)
|
| 427 |
+
p = step / decay_steps
|
| 428 |
+
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
|
| 429 |
+
lr += min_lr
|
| 430 |
+
return lr
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
|
| 434 |
+
decay_rate, min_lr):
|
| 435 |
+
# hold_steps = total number of steps
|
| 436 |
+
# to hold the LR, not the warmup + hold steps.
|
| 437 |
+
T_warmup_decay = max(1, warmup_steps**decay_rate)
|
| 438 |
+
T_hold_decay = max(1, (step - hold_steps)**decay_rate)
|
| 439 |
+
lr = (initial_lr * T_warmup_decay) / T_hold_decay
|
| 440 |
+
lr = max(lr, min_lr)
|
| 441 |
+
return lr
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
class SquareAnnealing(WarmupPolicy):
|
| 445 |
+
|
| 446 |
+
def __init__(self,
|
| 447 |
+
optimizer,
|
| 448 |
+
*,
|
| 449 |
+
max_steps,
|
| 450 |
+
min_lr=1e-5,
|
| 451 |
+
last_epoch=-1,
|
| 452 |
+
**kwargs):
|
| 453 |
+
super().__init__(optimizer=optimizer,
|
| 454 |
+
max_steps=max_steps,
|
| 455 |
+
last_epoch=last_epoch,
|
| 456 |
+
min_lr=min_lr,
|
| 457 |
+
**kwargs)
|
| 458 |
+
|
| 459 |
+
def _get_lr(self, step):
|
| 460 |
+
new_lrs = [
|
| 461 |
+
_square_annealing(
|
| 462 |
+
initial_lr=initial_lr,
|
| 463 |
+
step=step - self.warmup_steps,
|
| 464 |
+
max_steps=self.max_steps - self.warmup_steps,
|
| 465 |
+
min_lr=self.min_lr,
|
| 466 |
+
) for initial_lr in self.base_lrs
|
| 467 |
+
]
|
| 468 |
+
return new_lrs
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
class SquareRootAnnealing(WarmupPolicy):
|
| 472 |
+
|
| 473 |
+
def __init__(self,
|
| 474 |
+
optimizer,
|
| 475 |
+
*,
|
| 476 |
+
max_steps,
|
| 477 |
+
min_lr=0,
|
| 478 |
+
last_epoch=-1,
|
| 479 |
+
**kwargs):
|
| 480 |
+
super().__init__(optimizer=optimizer,
|
| 481 |
+
max_steps=max_steps,
|
| 482 |
+
last_epoch=last_epoch,
|
| 483 |
+
min_lr=min_lr,
|
| 484 |
+
**kwargs)
|
| 485 |
+
|
| 486 |
+
def _get_lr(self, step):
|
| 487 |
+
new_lrs = [
|
| 488 |
+
_squareroot_annealing(initial_lr=initial_lr,
|
| 489 |
+
step=step,
|
| 490 |
+
max_steps=self.max_steps,
|
| 491 |
+
min_lr=self.min_lr)
|
| 492 |
+
for initial_lr in self.base_lrs
|
| 493 |
+
]
|
| 494 |
+
return new_lrs
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
class CosineAnnealing(WarmupAnnealHoldPolicy):
|
| 498 |
+
|
| 499 |
+
def __init__(self,
|
| 500 |
+
optimizer,
|
| 501 |
+
*,
|
| 502 |
+
max_steps,
|
| 503 |
+
min_lr=0,
|
| 504 |
+
last_epoch=-1,
|
| 505 |
+
**kwargs):
|
| 506 |
+
super().__init__(optimizer=optimizer,
|
| 507 |
+
max_steps=max_steps,
|
| 508 |
+
last_epoch=last_epoch,
|
| 509 |
+
min_lr=min_lr,
|
| 510 |
+
**kwargs)
|
| 511 |
+
|
| 512 |
+
def _get_lr(self, step):
|
| 513 |
+
for initial_lr in self.base_lrs:
|
| 514 |
+
if initial_lr < self.min_lr:
|
| 515 |
+
raise ValueError(
|
| 516 |
+
f"{self} received an initial learning rate "
|
| 517 |
+
f"that was lower than the minimum learning rate.")
|
| 518 |
+
|
| 519 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
| 520 |
+
new_lrs = [
|
| 521 |
+
_cosine_annealing(
|
| 522 |
+
initial_lr=initial_lr,
|
| 523 |
+
step=step - self.warmup_steps,
|
| 524 |
+
max_steps=self.max_steps - self.warmup_steps,
|
| 525 |
+
min_lr=self.min_lr,
|
| 526 |
+
) for initial_lr in self.base_lrs
|
| 527 |
+
]
|
| 528 |
+
else:
|
| 529 |
+
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
|
| 530 |
+
return new_lrs
|
| 531 |
+
|
| 532 |
+
def _get_warmup_lr(self, step):
|
| 533 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
| 534 |
+
return super()._get_warmup_lr(step)
|
| 535 |
+
else:
|
| 536 |
+
# Use linear warmup for the initial part.
|
| 537 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
| 538 |
+
|
| 539 |
+
def _get_constant_lr(self, step):
|
| 540 |
+
# Only called when `constant_steps` > 0.
|
| 541 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
| 542 |
+
|
| 543 |
+
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
|
| 544 |
+
# Cosine Schedule for Megatron LM,
|
| 545 |
+
# slightly different warmup schedule + constant LR at the end.
|
| 546 |
+
new_lrs = [
|
| 547 |
+
_linear_warmup_with_cosine_annealing(
|
| 548 |
+
max_lr=self.base_lrs[0],
|
| 549 |
+
warmup_steps=self.warmup_steps,
|
| 550 |
+
step=step,
|
| 551 |
+
decay_steps=self.decay_steps,
|
| 552 |
+
min_lr=self.min_lr,
|
| 553 |
+
) for _ in self.base_lrs
|
| 554 |
+
]
|
| 555 |
+
return new_lrs
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
class NoamAnnealing(_LRScheduler):
|
| 559 |
+
|
| 560 |
+
def __init__(self,
|
| 561 |
+
optimizer,
|
| 562 |
+
*,
|
| 563 |
+
d_model,
|
| 564 |
+
warmup_steps=None,
|
| 565 |
+
warmup_ratio=None,
|
| 566 |
+
max_steps=None,
|
| 567 |
+
min_lr=0.0,
|
| 568 |
+
last_epoch=-1):
|
| 569 |
+
self._normalize = d_model**(-0.5)
|
| 570 |
+
assert not (warmup_steps is not None and warmup_ratio is not None), \
|
| 571 |
+
"Either use particular number of step or ratio"
|
| 572 |
+
assert warmup_ratio is None or max_steps is not None, \
|
| 573 |
+
"If there is a ratio, there should be a total steps"
|
| 574 |
+
|
| 575 |
+
# It is necessary to assign all attributes *before* __init__,
|
| 576 |
+
# as class is wrapped by an inner class.
|
| 577 |
+
self.max_steps = max_steps
|
| 578 |
+
if warmup_steps is not None:
|
| 579 |
+
self.warmup_steps = warmup_steps
|
| 580 |
+
elif warmup_ratio is not None:
|
| 581 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
| 582 |
+
else:
|
| 583 |
+
self.warmup_steps = 0
|
| 584 |
+
|
| 585 |
+
self.min_lr = min_lr
|
| 586 |
+
super().__init__(optimizer, last_epoch)
|
| 587 |
+
|
| 588 |
+
def get_lr(self):
|
| 589 |
+
if not self._get_lr_called_within_step:
|
| 590 |
+
warnings.warn(
|
| 591 |
+
"To get the last learning rate computed "
|
| 592 |
+
"by the scheduler, please use `get_last_lr()`.",
|
| 593 |
+
UserWarning,
|
| 594 |
+
stacklevel=2)
|
| 595 |
+
|
| 596 |
+
step = max(1, self.last_epoch)
|
| 597 |
+
|
| 598 |
+
for initial_lr in self.base_lrs:
|
| 599 |
+
if initial_lr < self.min_lr:
|
| 600 |
+
raise ValueError(
|
| 601 |
+
f"{self} received an initial learning rate "
|
| 602 |
+
f"that was lower than the minimum learning rate.")
|
| 603 |
+
|
| 604 |
+
new_lrs = [
|
| 605 |
+
self._noam_annealing(initial_lr=initial_lr, step=step)
|
| 606 |
+
for initial_lr in self.base_lrs
|
| 607 |
+
]
|
| 608 |
+
return new_lrs
|
| 609 |
+
|
| 610 |
+
def _noam_annealing(self, initial_lr, step):
|
| 611 |
+
if self.warmup_steps > 0:
|
| 612 |
+
mult = self._normalize * min(step**(-0.5),
|
| 613 |
+
step * (self.warmup_steps**(-1.5)))
|
| 614 |
+
else:
|
| 615 |
+
mult = self._normalize * step**(-0.5)
|
| 616 |
+
|
| 617 |
+
out_lr = initial_lr * mult
|
| 618 |
+
if step > self.warmup_steps:
|
| 619 |
+
out_lr = max(out_lr, self.min_lr)
|
| 620 |
+
return out_lr
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
class NoamHoldAnnealing(WarmupHoldPolicy):
|
| 624 |
+
|
| 625 |
+
def __init__(self,
|
| 626 |
+
optimizer,
|
| 627 |
+
*,
|
| 628 |
+
max_steps,
|
| 629 |
+
decay_rate=0.5,
|
| 630 |
+
min_lr=0.0,
|
| 631 |
+
last_epoch=-1,
|
| 632 |
+
**kwargs):
|
| 633 |
+
"""
|
| 634 |
+
From Nemo:
|
| 635 |
+
Implementation of the Noam Hold Annealing policy
|
| 636 |
+
from the SqueezeFormer paper.
|
| 637 |
+
|
| 638 |
+
Unlike NoamAnnealing, the peak learning rate
|
| 639 |
+
can be explicitly set for this scheduler.
|
| 640 |
+
The schedule first performs linear warmup,
|
| 641 |
+
then holds the peak LR, then decays with some schedule for
|
| 642 |
+
the remainder of the steps.
|
| 643 |
+
Therefore the min-lr is still dependent
|
| 644 |
+
on the hyper parameters selected.
|
| 645 |
+
|
| 646 |
+
It's schedule is determined by three factors-
|
| 647 |
+
|
| 648 |
+
Warmup Steps: Initial stage, where linear warmup
|
| 649 |
+
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
|
| 650 |
+
the peak LR is explicitly stated here instead of a scaling factor.
|
| 651 |
+
|
| 652 |
+
Hold Steps: Intermediate stage, where the peak LR
|
| 653 |
+
is maintained for some number of steps. In this region,
|
| 654 |
+
the high peak LR allows the model to converge faster
|
| 655 |
+
if training is stable. However the high LR
|
| 656 |
+
may also cause instability during training.
|
| 657 |
+
Should usually be a significant fraction of training
|
| 658 |
+
steps (around 30-40% of the entire training steps).
|
| 659 |
+
|
| 660 |
+
Decay Steps: Final stage, where the LR rapidly decays
|
| 661 |
+
with some scaling rate (set by decay rate).
|
| 662 |
+
To attain Noam decay, use 0.5,
|
| 663 |
+
for Squeezeformer recommended decay, use 1.0.
|
| 664 |
+
The fast decay after prolonged high LR during
|
| 665 |
+
hold phase allows for rapid convergence.
|
| 666 |
+
|
| 667 |
+
References:
|
| 668 |
+
- [Squeezeformer:
|
| 669 |
+
An Efficient Transformer for Automatic Speech Recognition]
|
| 670 |
+
(https://arxiv.org/abs/2206.00888)
|
| 671 |
+
|
| 672 |
+
Args:
|
| 673 |
+
optimizer: Pytorch compatible Optimizer object.
|
| 674 |
+
warmup_steps: Number of training steps in warmup stage
|
| 675 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
| 676 |
+
hold_steps: Number of training steps to
|
| 677 |
+
hold the learning rate after warm up
|
| 678 |
+
hold_ratio: Ratio of hold steps to total steps
|
| 679 |
+
max_steps: Total number of steps while training or `None` for
|
| 680 |
+
infinite training
|
| 681 |
+
decay_rate: Float value describing the polynomial decay
|
| 682 |
+
after the hold period. Default value
|
| 683 |
+
of 0.5 corresponds to Noam decay.
|
| 684 |
+
min_lr: Minimum learning rate.
|
| 685 |
+
"""
|
| 686 |
+
self.decay_rate = decay_rate
|
| 687 |
+
super().__init__(optimizer=optimizer,
|
| 688 |
+
max_steps=max_steps,
|
| 689 |
+
last_epoch=last_epoch,
|
| 690 |
+
min_lr=min_lr,
|
| 691 |
+
**kwargs)
|
| 692 |
+
|
| 693 |
+
def _get_lr(self, step):
|
| 694 |
+
if self.warmup_steps is None or self.warmup_steps == 0:
|
| 695 |
+
raise ValueError(
|
| 696 |
+
"Noam scheduler cannot be used without warmup steps")
|
| 697 |
+
|
| 698 |
+
if self.hold_steps > 0:
|
| 699 |
+
hold_steps = self.hold_steps - self.warmup_steps
|
| 700 |
+
else:
|
| 701 |
+
hold_steps = 0
|
| 702 |
+
|
| 703 |
+
new_lrs = [
|
| 704 |
+
_noam_hold_annealing(
|
| 705 |
+
initial_lr,
|
| 706 |
+
step=step,
|
| 707 |
+
warmup_steps=self.warmup_steps,
|
| 708 |
+
hold_steps=hold_steps,
|
| 709 |
+
decay_rate=self.decay_rate,
|
| 710 |
+
min_lr=self.min_lr,
|
| 711 |
+
) for initial_lr in self.base_lrs
|
| 712 |
+
]
|
| 713 |
+
return new_lrs
|
| 714 |
+
|
| 715 |
+
def set_step(self, step: int):
|
| 716 |
+
self.last_epoch = step
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
class ConstantLR(_LRScheduler):
|
| 720 |
+
"""The ConstantLR scheduler
|
| 721 |
+
|
| 722 |
+
This scheduler keeps a constant lr
|
| 723 |
+
|
| 724 |
+
"""
|
| 725 |
+
|
| 726 |
+
def __init__(
|
| 727 |
+
self,
|
| 728 |
+
optimizer: torch.optim.Optimizer,
|
| 729 |
+
):
|
| 730 |
+
# __init__() must be invoked before setting field
|
| 731 |
+
# because step() is also invoked in __init__()
|
| 732 |
+
super().__init__(optimizer)
|
| 733 |
+
|
| 734 |
+
def get_lr(self):
|
| 735 |
+
return self.base_lrs
|
| 736 |
+
|
| 737 |
+
def set_step(self, step: int):
|
| 738 |
+
self.last_epoch = step
|
cosyvoice/utils/train_utils.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
| 2 |
+
# 2023 Horizon Inc. (authors: Xingchen Song)
|
| 3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
import logging
|
| 18 |
+
import os
|
| 19 |
+
import torch
|
| 20 |
+
import json
|
| 21 |
+
import re
|
| 22 |
+
import datetime
|
| 23 |
+
import yaml
|
| 24 |
+
|
| 25 |
+
import deepspeed
|
| 26 |
+
import torch.optim as optim
|
| 27 |
+
import torch.distributed as dist
|
| 28 |
+
|
| 29 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 30 |
+
from torch.utils.data import DataLoader
|
| 31 |
+
from torch.nn.utils import clip_grad_norm_
|
| 32 |
+
|
| 33 |
+
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
| 34 |
+
|
| 35 |
+
from cosyvoice.dataset.dataset import Dataset
|
| 36 |
+
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def init_distributed(args):
|
| 40 |
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
| 41 |
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
| 42 |
+
rank = int(os.environ.get('RANK', 0))
|
| 43 |
+
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
|
| 44 |
+
', rank {}, world_size {}'.format(rank, world_size))
|
| 45 |
+
if args.train_engine == 'torch_ddp':
|
| 46 |
+
torch.cuda.set_device(local_rank)
|
| 47 |
+
dist.init_process_group(args.dist_backend)
|
| 48 |
+
else:
|
| 49 |
+
deepspeed.init_distributed(dist_backend=args.dist_backend)
|
| 50 |
+
return world_size, local_rank, rank
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def init_dataset_and_dataloader(args, configs, gan):
|
| 54 |
+
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
| 55 |
+
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
|
| 56 |
+
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
|
| 57 |
+
|
| 58 |
+
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
| 59 |
+
train_data_loader = DataLoader(train_dataset,
|
| 60 |
+
batch_size=None,
|
| 61 |
+
pin_memory=args.pin_memory,
|
| 62 |
+
num_workers=args.num_workers,
|
| 63 |
+
prefetch_factor=args.prefetch)
|
| 64 |
+
cv_data_loader = DataLoader(cv_dataset,
|
| 65 |
+
batch_size=None,
|
| 66 |
+
pin_memory=args.pin_memory,
|
| 67 |
+
num_workers=args.num_workers,
|
| 68 |
+
prefetch_factor=args.prefetch)
|
| 69 |
+
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def check_modify_and_save_config(args, configs):
|
| 73 |
+
if args.train_engine == "torch_ddp":
|
| 74 |
+
configs['train_conf']["dtype"] = 'fp32'
|
| 75 |
+
else:
|
| 76 |
+
with open(args.deepspeed_config, 'r') as fin:
|
| 77 |
+
ds_configs = json.load(fin)
|
| 78 |
+
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
| 79 |
+
configs['train_conf']["dtype"] = "fp16"
|
| 80 |
+
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
| 81 |
+
configs['train_conf']["dtype"] = "bf16"
|
| 82 |
+
else:
|
| 83 |
+
configs['train_conf']["dtype"] = "fp32"
|
| 84 |
+
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
| 85 |
+
# if use deepspeed, override ddp config
|
| 86 |
+
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
|
| 87 |
+
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
| 88 |
+
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
| 89 |
+
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
| 90 |
+
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
| 91 |
+
return configs
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def wrap_cuda_model(args, model):
|
| 95 |
+
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
|
| 96 |
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
| 97 |
+
if args.train_engine == "torch_ddp": # native pytorch ddp
|
| 98 |
+
assert (torch.cuda.is_available())
|
| 99 |
+
model.cuda()
|
| 100 |
+
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
| 101 |
+
else:
|
| 102 |
+
if int(os.environ.get('RANK', 0)) == 0:
|
| 103 |
+
logging.info("Estimating model states memory needs (zero2)...")
|
| 104 |
+
estimate_zero2_model_states_mem_needs_all_live(
|
| 105 |
+
model,
|
| 106 |
+
num_gpus_per_node=local_world_size,
|
| 107 |
+
num_nodes=world_size // local_world_size)
|
| 108 |
+
return model
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def init_optimizer_and_scheduler(args, configs, model, gan):
|
| 112 |
+
if gan is False:
|
| 113 |
+
if configs['train_conf']['optim'] == 'adam':
|
| 114 |
+
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
| 115 |
+
elif configs['train_conf']['optim'] == 'adamw':
|
| 116 |
+
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
| 117 |
+
else:
|
| 118 |
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
| 119 |
+
|
| 120 |
+
if configs['train_conf']['scheduler'] == 'warmuplr':
|
| 121 |
+
scheduler_type = WarmupLR
|
| 122 |
+
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
| 123 |
+
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
| 124 |
+
scheduler_type = NoamHoldAnnealing
|
| 125 |
+
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
| 126 |
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
| 127 |
+
scheduler_type = ConstantLR
|
| 128 |
+
scheduler = ConstantLR(optimizer)
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
| 131 |
+
|
| 132 |
+
# use deepspeed optimizer for speedup
|
| 133 |
+
if args.train_engine == "deepspeed":
|
| 134 |
+
def scheduler(opt):
|
| 135 |
+
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
| 136 |
+
model, optimizer, _, scheduler = deepspeed.initialize(
|
| 137 |
+
args=args,
|
| 138 |
+
model=model,
|
| 139 |
+
optimizer=None,
|
| 140 |
+
lr_scheduler=scheduler,
|
| 141 |
+
model_parameters=model.parameters())
|
| 142 |
+
|
| 143 |
+
optimizer_d, scheduler_d = None, None
|
| 144 |
+
|
| 145 |
+
else:
|
| 146 |
+
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
|
| 147 |
+
if configs['train_conf']['optim'] == 'adam':
|
| 148 |
+
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
| 149 |
+
elif configs['train_conf']['optim'] == 'adamw':
|
| 150 |
+
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
| 151 |
+
else:
|
| 152 |
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
| 153 |
+
|
| 154 |
+
if configs['train_conf']['scheduler'] == 'warmuplr':
|
| 155 |
+
scheduler_type = WarmupLR
|
| 156 |
+
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
| 157 |
+
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
| 158 |
+
scheduler_type = NoamHoldAnnealing
|
| 159 |
+
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
| 160 |
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
| 161 |
+
scheduler_type = ConstantLR
|
| 162 |
+
scheduler = ConstantLR(optimizer)
|
| 163 |
+
else:
|
| 164 |
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
| 165 |
+
|
| 166 |
+
if configs['train_conf']['optim_d'] == 'adam':
|
| 167 |
+
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
| 168 |
+
elif configs['train_conf']['optim_d'] == 'adamw':
|
| 169 |
+
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
| 170 |
+
else:
|
| 171 |
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
| 172 |
+
|
| 173 |
+
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
| 174 |
+
scheduler_type = WarmupLR
|
| 175 |
+
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
| 176 |
+
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
| 177 |
+
scheduler_type = NoamHoldAnnealing
|
| 178 |
+
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
| 179 |
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
| 180 |
+
scheduler_type = ConstantLR
|
| 181 |
+
scheduler_d = ConstantLR(optimizer_d)
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
| 184 |
+
return model, optimizer, scheduler, optimizer_d, scheduler_d
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def init_summarywriter(args):
|
| 188 |
+
writer = None
|
| 189 |
+
if int(os.environ.get('RANK', 0)) == 0:
|
| 190 |
+
os.makedirs(args.model_dir, exist_ok=True)
|
| 191 |
+
writer = SummaryWriter(args.tensorboard_dir)
|
| 192 |
+
return writer
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def save_model(model, model_name, info_dict):
|
| 196 |
+
rank = int(os.environ.get('RANK', 0))
|
| 197 |
+
model_dir = info_dict["model_dir"]
|
| 198 |
+
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
|
| 199 |
+
|
| 200 |
+
if info_dict["train_engine"] == "torch_ddp":
|
| 201 |
+
if rank == 0:
|
| 202 |
+
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
|
| 203 |
+
else:
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
model.save_checkpoint(save_dir=model_dir,
|
| 206 |
+
tag=model_name,
|
| 207 |
+
client_state=info_dict)
|
| 208 |
+
if rank == 0:
|
| 209 |
+
info_path = re.sub('.pt$', '.yaml', save_model_path)
|
| 210 |
+
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
| 211 |
+
with open(info_path, 'w') as fout:
|
| 212 |
+
data = yaml.dump(info_dict)
|
| 213 |
+
fout.write(data)
|
| 214 |
+
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def cosyvoice_join(group_join, info_dict):
|
| 218 |
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
| 219 |
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
| 220 |
+
rank = int(os.environ.get('RANK', 0))
|
| 221 |
+
|
| 222 |
+
if info_dict["batch_idx"] != 0:
|
| 223 |
+
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
|
| 224 |
+
try:
|
| 225 |
+
dist.monitored_barrier(group=group_join,
|
| 226 |
+
timeout=group_join.options._timeout)
|
| 227 |
+
return False
|
| 228 |
+
except RuntimeError as e:
|
| 229 |
+
logging.info("Detected uneven workload distribution: {}\n".format(e) +
|
| 230 |
+
"Break current worker to manually join all workers, " +
|
| 231 |
+
"world_size {}, current rank {}, current local_rank {}\n".
|
| 232 |
+
format(world_size, rank, local_rank))
|
| 233 |
+
return True
|
| 234 |
+
else:
|
| 235 |
+
return False
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def batch_forward(model, batch, scaler, info_dict):
|
| 239 |
+
device = int(os.environ.get('LOCAL_RANK', 0))
|
| 240 |
+
|
| 241 |
+
dtype = info_dict["dtype"]
|
| 242 |
+
if dtype == "fp16":
|
| 243 |
+
dtype = torch.float16
|
| 244 |
+
elif dtype == "bf16":
|
| 245 |
+
dtype = torch.bfloat16
|
| 246 |
+
else: # fp32
|
| 247 |
+
dtype = torch.float32
|
| 248 |
+
|
| 249 |
+
if info_dict['train_engine'] == 'torch_ddp':
|
| 250 |
+
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
|
| 251 |
+
else:
|
| 252 |
+
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
| 253 |
+
|
| 254 |
+
with autocast:
|
| 255 |
+
info_dict['loss_dict'] = model(batch, device)
|
| 256 |
+
return info_dict
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def batch_backward(model, scaler, info_dict):
|
| 260 |
+
if info_dict["train_engine"] == "deepspeed":
|
| 261 |
+
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
| 262 |
+
else:
|
| 263 |
+
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
| 264 |
+
if scaler is not None:
|
| 265 |
+
scaler.scale(scaled_loss).backward()
|
| 266 |
+
else:
|
| 267 |
+
scaled_loss.backward()
|
| 268 |
+
|
| 269 |
+
info_dict['loss_dict']['loss'] = scaled_loss
|
| 270 |
+
return info_dict
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
| 274 |
+
grad_norm = 0.0
|
| 275 |
+
if info_dict['train_engine'] == "deepspeed":
|
| 276 |
+
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
| 277 |
+
model.step()
|
| 278 |
+
grad_norm = model.get_global_grad_norm()
|
| 279 |
+
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
| 280 |
+
# Use mixed precision training
|
| 281 |
+
if scaler is not None:
|
| 282 |
+
scaler.unscale_(optimizer)
|
| 283 |
+
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
| 284 |
+
# We don't check grad here since that if the gradient
|
| 285 |
+
# has inf/nan values, scaler.step will skip
|
| 286 |
+
# optimizer.step().
|
| 287 |
+
if torch.isfinite(grad_norm):
|
| 288 |
+
scaler.step(optimizer)
|
| 289 |
+
scaler.update()
|
| 290 |
+
else:
|
| 291 |
+
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
| 292 |
+
if torch.isfinite(grad_norm):
|
| 293 |
+
optimizer.step()
|
| 294 |
+
optimizer.zero_grad()
|
| 295 |
+
scheduler.step()
|
| 296 |
+
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
| 297 |
+
info_dict["grad_norm"] = grad_norm
|
| 298 |
+
return info_dict
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def log_per_step(writer, info_dict):
|
| 302 |
+
tag = info_dict["tag"]
|
| 303 |
+
epoch = info_dict.get('epoch', 0)
|
| 304 |
+
step = info_dict["step"]
|
| 305 |
+
batch_idx = info_dict["batch_idx"]
|
| 306 |
+
loss_dict = info_dict['loss_dict']
|
| 307 |
+
rank = int(os.environ.get('RANK', 0))
|
| 308 |
+
|
| 309 |
+
# only rank 0 write to tensorboard to avoid multi-process write
|
| 310 |
+
if writer is not None:
|
| 311 |
+
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
|
| 312 |
+
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
|
| 313 |
+
for k in ['epoch', 'lr', 'grad_norm']:
|
| 314 |
+
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
| 315 |
+
for k, v in loss_dict.items():
|
| 316 |
+
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
| 317 |
+
|
| 318 |
+
# TRAIN & CV, Shell log (stdout)
|
| 319 |
+
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
|
| 320 |
+
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
|
| 321 |
+
for name, value in loss_dict.items():
|
| 322 |
+
log_str += '{} {:.6f} '.format(name, value)
|
| 323 |
+
if tag == "TRAIN":
|
| 324 |
+
log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
|
| 325 |
+
info_dict["lr"], info_dict['grad_norm'])
|
| 326 |
+
log_str += ' rank {}'.format(rank)
|
| 327 |
+
logging.debug(log_str)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def log_per_save(writer, info_dict):
|
| 331 |
+
tag = info_dict["tag"]
|
| 332 |
+
epoch = info_dict["epoch"]
|
| 333 |
+
step = info_dict["step"]
|
| 334 |
+
loss_dict = info_dict["loss_dict"]
|
| 335 |
+
lr = info_dict['lr']
|
| 336 |
+
rank = int(os.environ.get('RANK', 0))
|
| 337 |
+
logging.info(
|
| 338 |
+
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
| 339 |
+
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
| 340 |
+
|
| 341 |
+
if writer is not None:
|
| 342 |
+
for k in ['epoch', 'lr']:
|
| 343 |
+
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
| 344 |
+
for k, v in loss_dict.items():
|
| 345 |
+
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# set random seed, so that you may reproduce your result.
|
| 2 |
+
__set_seed1: !apply:random.seed [1986]
|
| 3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
| 4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
| 5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
| 6 |
+
|
| 7 |
+
# fixed params
|
| 8 |
+
sample_rate: 22050
|
| 9 |
+
text_encoder_input_size: 512
|
| 10 |
+
llm_input_size: 1024
|
| 11 |
+
llm_output_size: 1024
|
| 12 |
+
spk_embed_dim: 192
|
| 13 |
+
|
| 14 |
+
# model params
|
| 15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
| 16 |
+
# for system/third_party class/function, we do not require this.
|
| 17 |
+
llm: !new:cosyvoice.llm.llm.TransformerLM
|
| 18 |
+
text_encoder_input_size: !ref <text_encoder_input_size>
|
| 19 |
+
llm_input_size: !ref <llm_input_size>
|
| 20 |
+
llm_output_size: !ref <llm_output_size>
|
| 21 |
+
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
| 22 |
+
speech_token_size: 4096
|
| 23 |
+
length_normalized_loss: True
|
| 24 |
+
lsm_weight: 0
|
| 25 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
| 26 |
+
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
| 27 |
+
input_size: !ref <text_encoder_input_size>
|
| 28 |
+
output_size: 1024
|
| 29 |
+
attention_heads: 8
|
| 30 |
+
linear_units: 2048
|
| 31 |
+
num_blocks: 3
|
| 32 |
+
dropout_rate: 0.1
|
| 33 |
+
positional_dropout_rate: 0.1
|
| 34 |
+
attention_dropout_rate: 0.0
|
| 35 |
+
normalize_before: True
|
| 36 |
+
input_layer: 'linear'
|
| 37 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
| 38 |
+
selfattention_layer_type: 'rel_selfattn'
|
| 39 |
+
use_cnn_module: False
|
| 40 |
+
macaron_style: False
|
| 41 |
+
use_dynamic_chunk: False
|
| 42 |
+
use_dynamic_left_chunk: False
|
| 43 |
+
static_chunk_size: 1
|
| 44 |
+
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
| 45 |
+
input_size: !ref <llm_input_size>
|
| 46 |
+
output_size: !ref <llm_output_size>
|
| 47 |
+
attention_heads: 8
|
| 48 |
+
linear_units: 2048
|
| 49 |
+
num_blocks: 7
|
| 50 |
+
dropout_rate: 0.1
|
| 51 |
+
positional_dropout_rate: 0.1
|
| 52 |
+
attention_dropout_rate: 0.0
|
| 53 |
+
input_layer: 'linear_legacy'
|
| 54 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
| 55 |
+
selfattention_layer_type: 'rel_selfattn'
|
| 56 |
+
static_chunk_size: 1
|
| 57 |
+
sampling: !name:cosyvoice.utils.common.ras_sampling
|
| 58 |
+
top_p: 0.8
|
| 59 |
+
top_k: 25
|
| 60 |
+
win_size: 10
|
| 61 |
+
tau_r: 0.1
|
| 62 |
+
|
| 63 |
+
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
| 64 |
+
input_size: 512
|
| 65 |
+
output_size: 80
|
| 66 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
| 67 |
+
output_type: 'mel'
|
| 68 |
+
vocab_size: 4096
|
| 69 |
+
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
| 70 |
+
only_mask_loss: True
|
| 71 |
+
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
| 72 |
+
output_size: 512
|
| 73 |
+
attention_heads: 4
|
| 74 |
+
linear_units: 1024
|
| 75 |
+
num_blocks: 3
|
| 76 |
+
dropout_rate: 0.1
|
| 77 |
+
positional_dropout_rate: 0.1
|
| 78 |
+
attention_dropout_rate: 0.1
|
| 79 |
+
normalize_before: True
|
| 80 |
+
input_layer: 'linear'
|
| 81 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
| 82 |
+
selfattention_layer_type: 'rel_selfattn'
|
| 83 |
+
input_size: 512
|
| 84 |
+
use_cnn_module: False
|
| 85 |
+
macaron_style: False
|
| 86 |
+
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
| 87 |
+
channels: 80
|
| 88 |
+
sampling_ratios: [1, 1, 1, 1]
|
| 89 |
+
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
| 90 |
+
in_channels: 240
|
| 91 |
+
n_spks: 1
|
| 92 |
+
spk_emb_dim: 80
|
| 93 |
+
cfm_params: !new:omegaconf.DictConfig
|
| 94 |
+
content:
|
| 95 |
+
sigma_min: 1e-06
|
| 96 |
+
solver: 'euler'
|
| 97 |
+
t_scheduler: 'cosine'
|
| 98 |
+
training_cfg_rate: 0.2
|
| 99 |
+
inference_cfg_rate: 0.7
|
| 100 |
+
reg_loss_type: 'l1'
|
| 101 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
| 102 |
+
in_channels: 320
|
| 103 |
+
out_channels: 80
|
| 104 |
+
channels: [256, 256]
|
| 105 |
+
dropout: 0.0
|
| 106 |
+
attention_head_dim: 64
|
| 107 |
+
n_blocks: 4
|
| 108 |
+
num_mid_blocks: 8
|
| 109 |
+
num_heads: 8
|
| 110 |
+
act_fn: 'gelu'
|
| 111 |
+
|
| 112 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
| 113 |
+
in_channels: 80
|
| 114 |
+
base_channels: 512
|
| 115 |
+
nb_harmonics: 8
|
| 116 |
+
sampling_rate: !ref <sample_rate>
|
| 117 |
+
nsf_alpha: 0.1
|
| 118 |
+
nsf_sigma: 0.003
|
| 119 |
+
nsf_voiced_threshold: 10
|
| 120 |
+
upsample_rates: [8, 8]
|
| 121 |
+
upsample_kernel_sizes: [16, 16]
|
| 122 |
+
istft_params:
|
| 123 |
+
n_fft: 16
|
| 124 |
+
hop_len: 4
|
| 125 |
+
resblock_kernel_sizes: [3, 7, 11]
|
| 126 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
| 127 |
+
source_resblock_kernel_sizes: [7, 11]
|
| 128 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
| 129 |
+
lrelu_slope: 0.1
|
| 130 |
+
audio_limit: 0.99
|
| 131 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
| 132 |
+
num_class: 1
|
| 133 |
+
in_channels: 80
|
| 134 |
+
cond_channels: 512
|
| 135 |
+
|
| 136 |
+
# gan related module
|
| 137 |
+
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
| 138 |
+
n_fft: 1024
|
| 139 |
+
num_mels: 80
|
| 140 |
+
sampling_rate: !ref <sample_rate>
|
| 141 |
+
hop_size: 256
|
| 142 |
+
win_size: 1024
|
| 143 |
+
fmin: 0
|
| 144 |
+
fmax: null
|
| 145 |
+
center: False
|
| 146 |
+
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
| 147 |
+
generator: !ref <hift>
|
| 148 |
+
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
| 149 |
+
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
| 150 |
+
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
| 151 |
+
mel_spec_transform: [
|
| 152 |
+
!ref <mel_spec_transform1>
|
| 153 |
+
]
|
| 154 |
+
|
| 155 |
+
# processor functions
|
| 156 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
| 157 |
+
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
| 158 |
+
multilingual: True
|
| 159 |
+
num_languages: 100
|
| 160 |
+
language: 'en'
|
| 161 |
+
task: 'transcribe'
|
| 162 |
+
allowed_special: 'all'
|
| 163 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
| 164 |
+
get_tokenizer: !ref <get_tokenizer>
|
| 165 |
+
allowed_special: !ref <allowed_special>
|
| 166 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
| 167 |
+
max_length: 40960
|
| 168 |
+
min_length: 0
|
| 169 |
+
token_max_length: 200
|
| 170 |
+
token_min_length: 1
|
| 171 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
| 172 |
+
resample_rate: !ref <sample_rate>
|
| 173 |
+
truncate: !name:cosyvoice.dataset.processor.truncate
|
| 174 |
+
truncate_length: 24576 # must be a multiplier of hop_size
|
| 175 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
| 176 |
+
n_fft: 1024
|
| 177 |
+
num_mels: 80
|
| 178 |
+
sampling_rate: !ref <sample_rate>
|
| 179 |
+
hop_size: 256
|
| 180 |
+
win_size: 1024
|
| 181 |
+
fmin: 0
|
| 182 |
+
fmax: 8000
|
| 183 |
+
center: False
|
| 184 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
| 185 |
+
feat_extractor: !ref <feat_extractor>
|
| 186 |
+
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
| 187 |
+
sample_rate: !ref <sample_rate>
|
| 188 |
+
hop_size: 256
|
| 189 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
| 190 |
+
normalize: True
|
| 191 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
| 192 |
+
shuffle_size: 1000
|
| 193 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
| 194 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
| 195 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
| 196 |
+
batch_type: 'dynamic'
|
| 197 |
+
max_frames_in_batch: 12000
|
| 198 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
| 199 |
+
use_spk_embedding: False # change to True during sft
|
| 200 |
+
|
| 201 |
+
# dataset processor pipeline
|
| 202 |
+
data_pipeline: [
|
| 203 |
+
!ref <parquet_opener>,
|
| 204 |
+
!ref <tokenize>,
|
| 205 |
+
!ref <filter>,
|
| 206 |
+
!ref <resample>,
|
| 207 |
+
!ref <compute_fbank>,
|
| 208 |
+
!ref <parse_embedding>,
|
| 209 |
+
!ref <shuffle>,
|
| 210 |
+
!ref <sort>,
|
| 211 |
+
!ref <batch>,
|
| 212 |
+
!ref <padding>,
|
| 213 |
+
]
|
| 214 |
+
data_pipeline_gan: [
|
| 215 |
+
!ref <parquet_opener>,
|
| 216 |
+
!ref <tokenize>,
|
| 217 |
+
!ref <filter>,
|
| 218 |
+
!ref <resample>,
|
| 219 |
+
!ref <truncate>,
|
| 220 |
+
!ref <compute_fbank>,
|
| 221 |
+
!ref <compute_f0>,
|
| 222 |
+
!ref <parse_embedding>,
|
| 223 |
+
!ref <shuffle>,
|
| 224 |
+
!ref <sort>,
|
| 225 |
+
!ref <batch>,
|
| 226 |
+
!ref <padding>,
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
# llm flow train conf
|
| 230 |
+
train_conf:
|
| 231 |
+
optim: adam
|
| 232 |
+
optim_conf:
|
| 233 |
+
lr: 0.002 # change to 0.001 if you want to train flow from scratch
|
| 234 |
+
scheduler: warmuplr
|
| 235 |
+
scheduler_conf:
|
| 236 |
+
warmup_steps: 25000
|
| 237 |
+
max_epoch: 200
|
| 238 |
+
grad_clip: 5
|
| 239 |
+
accum_grad: 2
|
| 240 |
+
log_interval: 100
|
| 241 |
+
save_per_step: -1
|
| 242 |
+
|
| 243 |
+
# gan train conf
|
| 244 |
+
train_conf_gan:
|
| 245 |
+
optim: adam
|
| 246 |
+
optim_conf:
|
| 247 |
+
lr: 0.0002 # use small lr for gan training
|
| 248 |
+
scheduler: constantlr
|
| 249 |
+
optim_d: adam
|
| 250 |
+
optim_conf_d:
|
| 251 |
+
lr: 0.0002 # use small lr for gan training
|
| 252 |
+
scheduler_d: constantlr
|
| 253 |
+
max_epoch: 200
|
| 254 |
+
grad_clip: 5
|
| 255 |
+
accum_grad: 1 # in gan training, accum_grad must be 1
|
| 256 |
+
log_interval: 100
|
| 257 |
+
save_per_step: -1
|
examples/libritts/cosyvoice/conf/cosyvoice.yaml
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# set random seed, so that you may reproduce your result.
|
| 2 |
+
__set_seed1: !apply:random.seed [1986]
|
| 3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
| 4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
| 5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
| 6 |
+
|
| 7 |
+
# fixed params
|
| 8 |
+
sample_rate: 22050
|
| 9 |
+
text_encoder_input_size: 512
|
| 10 |
+
llm_input_size: 1024
|
| 11 |
+
llm_output_size: 1024
|
| 12 |
+
spk_embed_dim: 192
|
| 13 |
+
|
| 14 |
+
# model params
|
| 15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
| 16 |
+
# for system/third_party class/function, we do not require this.
|
| 17 |
+
llm: !new:cosyvoice.llm.llm.TransformerLM
|
| 18 |
+
text_encoder_input_size: !ref <text_encoder_input_size>
|
| 19 |
+
llm_input_size: !ref <llm_input_size>
|
| 20 |
+
llm_output_size: !ref <llm_output_size>
|
| 21 |
+
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
| 22 |
+
speech_token_size: 4096
|
| 23 |
+
length_normalized_loss: True
|
| 24 |
+
lsm_weight: 0
|
| 25 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
| 26 |
+
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
| 27 |
+
input_size: !ref <text_encoder_input_size>
|
| 28 |
+
output_size: 1024
|
| 29 |
+
attention_heads: 16
|
| 30 |
+
linear_units: 4096
|
| 31 |
+
num_blocks: 6
|
| 32 |
+
dropout_rate: 0.1
|
| 33 |
+
positional_dropout_rate: 0.1
|
| 34 |
+
attention_dropout_rate: 0.0
|
| 35 |
+
normalize_before: True
|
| 36 |
+
input_layer: 'linear'
|
| 37 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
| 38 |
+
selfattention_layer_type: 'rel_selfattn'
|
| 39 |
+
use_cnn_module: False
|
| 40 |
+
macaron_style: False
|
| 41 |
+
use_dynamic_chunk: False
|
| 42 |
+
use_dynamic_left_chunk: False
|
| 43 |
+
static_chunk_size: 1
|
| 44 |
+
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
| 45 |
+
input_size: !ref <llm_input_size>
|
| 46 |
+
output_size: !ref <llm_output_size>
|
| 47 |
+
attention_heads: 16
|
| 48 |
+
linear_units: 4096
|
| 49 |
+
num_blocks: 14
|
| 50 |
+
dropout_rate: 0.1
|
| 51 |
+
positional_dropout_rate: 0.1
|
| 52 |
+
attention_dropout_rate: 0.0
|
| 53 |
+
input_layer: 'linear_legacy'
|
| 54 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
| 55 |
+
selfattention_layer_type: 'rel_selfattn'
|
| 56 |
+
static_chunk_size: 1
|
| 57 |
+
sampling: !name:cosyvoice.utils.common.ras_sampling
|
| 58 |
+
top_p: 0.8
|
| 59 |
+
top_k: 25
|
| 60 |
+
win_size: 10
|
| 61 |
+
tau_r: 0.1
|
| 62 |
+
|
| 63 |
+
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
| 64 |
+
input_size: 512
|
| 65 |
+
output_size: 80
|
| 66 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
| 67 |
+
output_type: 'mel'
|
| 68 |
+
vocab_size: 4096
|
| 69 |
+
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
| 70 |
+
only_mask_loss: True
|
| 71 |
+
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
| 72 |
+
output_size: 512
|
| 73 |
+
attention_heads: 8
|
| 74 |
+
linear_units: 2048
|
| 75 |
+
num_blocks: 6
|
| 76 |
+
dropout_rate: 0.1
|
| 77 |
+
positional_dropout_rate: 0.1
|
| 78 |
+
attention_dropout_rate: 0.1
|
| 79 |
+
normalize_before: True
|
| 80 |
+
input_layer: 'linear'
|
| 81 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
| 82 |
+
selfattention_layer_type: 'rel_selfattn'
|
| 83 |
+
input_size: 512
|
| 84 |
+
use_cnn_module: False
|
| 85 |
+
macaron_style: False
|
| 86 |
+
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
| 87 |
+
channels: 80
|
| 88 |
+
sampling_ratios: [1, 1, 1, 1]
|
| 89 |
+
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
| 90 |
+
in_channels: 240
|
| 91 |
+
n_spks: 1
|
| 92 |
+
spk_emb_dim: 80
|
| 93 |
+
cfm_params: !new:omegaconf.DictConfig
|
| 94 |
+
content:
|
| 95 |
+
sigma_min: 1e-06
|
| 96 |
+
solver: 'euler'
|
| 97 |
+
t_scheduler: 'cosine'
|
| 98 |
+
training_cfg_rate: 0.2
|
| 99 |
+
inference_cfg_rate: 0.7
|
| 100 |
+
reg_loss_type: 'l1'
|
| 101 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
| 102 |
+
in_channels: 320
|
| 103 |
+
out_channels: 80
|
| 104 |
+
channels: [256, 256]
|
| 105 |
+
dropout: 0.0
|
| 106 |
+
attention_head_dim: 64
|
| 107 |
+
n_blocks: 4
|
| 108 |
+
num_mid_blocks: 12
|
| 109 |
+
num_heads: 8
|
| 110 |
+
act_fn: 'gelu'
|
| 111 |
+
|
| 112 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
| 113 |
+
in_channels: 80
|
| 114 |
+
base_channels: 512
|
| 115 |
+
nb_harmonics: 8
|
| 116 |
+
sampling_rate: !ref <sample_rate>
|
| 117 |
+
nsf_alpha: 0.1
|
| 118 |
+
nsf_sigma: 0.003
|
| 119 |
+
nsf_voiced_threshold: 10
|
| 120 |
+
upsample_rates: [8, 8]
|
| 121 |
+
upsample_kernel_sizes: [16, 16]
|
| 122 |
+
istft_params:
|
| 123 |
+
n_fft: 16
|
| 124 |
+
hop_len: 4
|
| 125 |
+
resblock_kernel_sizes: [3, 7, 11]
|
| 126 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
| 127 |
+
source_resblock_kernel_sizes: [7, 11]
|
| 128 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
| 129 |
+
lrelu_slope: 0.1
|
| 130 |
+
audio_limit: 0.99
|
| 131 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
| 132 |
+
num_class: 1
|
| 133 |
+
in_channels: 80
|
| 134 |
+
cond_channels: 512
|
| 135 |
+
|
| 136 |
+
# gan related module
|
| 137 |
+
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
| 138 |
+
n_fft: 1024
|
| 139 |
+
num_mels: 80
|
| 140 |
+
sampling_rate: !ref <sample_rate>
|
| 141 |
+
hop_size: 256
|
| 142 |
+
win_size: 1024
|
| 143 |
+
fmin: 0
|
| 144 |
+
fmax: null
|
| 145 |
+
center: False
|
| 146 |
+
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
| 147 |
+
generator: !ref <hift>
|
| 148 |
+
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
| 149 |
+
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
| 150 |
+
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
| 151 |
+
mel_spec_transform: [
|
| 152 |
+
!ref <mel_spec_transform1>
|
| 153 |
+
]
|
| 154 |
+
|
| 155 |
+
# processor functions
|
| 156 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
| 157 |
+
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
| 158 |
+
multilingual: True
|
| 159 |
+
num_languages: 100
|
| 160 |
+
language: 'en'
|
| 161 |
+
task: 'transcribe'
|
| 162 |
+
allowed_special: 'all'
|
| 163 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
| 164 |
+
get_tokenizer: !ref <get_tokenizer>
|
| 165 |
+
allowed_special: !ref <allowed_special>
|
| 166 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
| 167 |
+
max_length: 40960
|
| 168 |
+
min_length: 0
|
| 169 |
+
token_max_length: 200
|
| 170 |
+
token_min_length: 1
|
| 171 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
| 172 |
+
resample_rate: !ref <sample_rate>
|
| 173 |
+
truncate: !name:cosyvoice.dataset.processor.truncate
|
| 174 |
+
truncate_length: 24576 # must be a multiplier of hop_size
|
| 175 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
| 176 |
+
n_fft: 1024
|
| 177 |
+
num_mels: 80
|
| 178 |
+
sampling_rate: !ref <sample_rate>
|
| 179 |
+
hop_size: 256
|
| 180 |
+
win_size: 1024
|
| 181 |
+
fmin: 0
|
| 182 |
+
fmax: 8000
|
| 183 |
+
center: False
|
| 184 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
| 185 |
+
feat_extractor: !ref <feat_extractor>
|
| 186 |
+
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
| 187 |
+
sample_rate: !ref <sample_rate>
|
| 188 |
+
hop_size: 256
|
| 189 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
| 190 |
+
normalize: True
|
| 191 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
| 192 |
+
shuffle_size: 1000
|
| 193 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
| 194 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
| 195 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
| 196 |
+
batch_type: 'dynamic'
|
| 197 |
+
max_frames_in_batch: 2000 # change to 1400 in gan train on v100 16g
|
| 198 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
| 199 |
+
use_spk_embedding: False # change to True during sft
|
| 200 |
+
|
| 201 |
+
# dataset processor pipeline
|
| 202 |
+
data_pipeline: [
|
| 203 |
+
!ref <parquet_opener>,
|
| 204 |
+
!ref <tokenize>,
|
| 205 |
+
!ref <filter>,
|
| 206 |
+
!ref <resample>,
|
| 207 |
+
!ref <compute_fbank>,
|
| 208 |
+
!ref <parse_embedding>,
|
| 209 |
+
!ref <shuffle>,
|
| 210 |
+
!ref <sort>,
|
| 211 |
+
!ref <batch>,
|
| 212 |
+
!ref <padding>,
|
| 213 |
+
]
|
| 214 |
+
data_pipeline_gan: [
|
| 215 |
+
!ref <parquet_opener>,
|
| 216 |
+
!ref <tokenize>,
|
| 217 |
+
!ref <filter>,
|
| 218 |
+
!ref <resample>,
|
| 219 |
+
!ref <truncate>,
|
| 220 |
+
!ref <compute_fbank>,
|
| 221 |
+
!ref <compute_f0>,
|
| 222 |
+
!ref <parse_embedding>,
|
| 223 |
+
!ref <shuffle>,
|
| 224 |
+
!ref <sort>,
|
| 225 |
+
!ref <batch>,
|
| 226 |
+
!ref <padding>,
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
# llm flow train conf
|
| 230 |
+
train_conf:
|
| 231 |
+
optim: adam
|
| 232 |
+
optim_conf:
|
| 233 |
+
lr: 0.001 # change to 1e-5 during sft
|
| 234 |
+
scheduler: warmuplr # change to constantlr during sft
|
| 235 |
+
scheduler_conf:
|
| 236 |
+
warmup_steps: 2500
|
| 237 |
+
max_epoch: 200
|
| 238 |
+
grad_clip: 5
|
| 239 |
+
accum_grad: 2
|
| 240 |
+
log_interval: 100
|
| 241 |
+
save_per_step: -1
|
| 242 |
+
|
| 243 |
+
# gan train conf
|
| 244 |
+
train_conf_gan:
|
| 245 |
+
optim: adam
|
| 246 |
+
optim_conf:
|
| 247 |
+
lr: 0.0002 # use small lr for gan training
|
| 248 |
+
scheduler: constantlr
|
| 249 |
+
optim_d: adam
|
| 250 |
+
optim_conf_d:
|
| 251 |
+
lr: 0.0002 # use small lr for gan training
|
| 252 |
+
scheduler_d: constantlr
|
| 253 |
+
max_epoch: 200
|
| 254 |
+
grad_clip: 5
|
| 255 |
+
accum_grad: 1 # in gan training, accum_grad must be 1
|
| 256 |
+
log_interval: 100
|
| 257 |
+
save_per_step: -1
|
examples/libritts/cosyvoice/conf/ds_stage2.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train_micro_batch_size_per_gpu": 1,
|
| 3 |
+
"gradient_accumulation_steps": 1,
|
| 4 |
+
"steps_per_print": 100,
|
| 5 |
+
"gradient_clipping": 5,
|
| 6 |
+
"fp16": {
|
| 7 |
+
"enabled": false,
|
| 8 |
+
"auto_cast": false,
|
| 9 |
+
"loss_scale": 0,
|
| 10 |
+
"initial_scale_power": 16,
|
| 11 |
+
"loss_scale_window": 256,
|
| 12 |
+
"hysteresis": 2,
|
| 13 |
+
"consecutive_hysteresis": false,
|
| 14 |
+
"min_loss_scale": 1
|
| 15 |
+
},
|
| 16 |
+
"bf16": {
|
| 17 |
+
"enabled": false
|
| 18 |
+
},
|
| 19 |
+
"zero_force_ds_cpu_optimizer": false,
|
| 20 |
+
"zero_optimization": {
|
| 21 |
+
"stage": 2,
|
| 22 |
+
"offload_optimizer": {
|
| 23 |
+
"device": "none",
|
| 24 |
+
"pin_memory": true
|
| 25 |
+
},
|
| 26 |
+
"allgather_partitions": true,
|
| 27 |
+
"allgather_bucket_size": 5e8,
|
| 28 |
+
"overlap_comm": false,
|
| 29 |
+
"reduce_scatter": true,
|
| 30 |
+
"reduce_bucket_size": 5e8,
|
| 31 |
+
"contiguous_gradients" : true
|
| 32 |
+
},
|
| 33 |
+
"optimizer": {
|
| 34 |
+
"type": "AdamW",
|
| 35 |
+
"params": {
|
| 36 |
+
"lr": 0.001,
|
| 37 |
+
"weight_decay": 0.0001,
|
| 38 |
+
"torch_adam": true,
|
| 39 |
+
"adam_w_mode": true
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
}
|
examples/libritts/cosyvoice/local/download_and_untar.sh
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Copyright 2014 Johns Hopkins University (author: Daniel Povey)
|
| 4 |
+
# Apache 2.0
|
| 5 |
+
|
| 6 |
+
remove_archive=false
|
| 7 |
+
|
| 8 |
+
if [ "$1" == --remove-archive ]; then
|
| 9 |
+
remove_archive=true
|
| 10 |
+
shift
|
| 11 |
+
fi
|
| 12 |
+
|
| 13 |
+
if [ $# -ne 3 ]; then
|
| 14 |
+
echo "Usage: $0 [--remove-archive] <data-base> <url-base> <corpus-part>"
|
| 15 |
+
echo "e.g.: $0 /export/a15/vpanayotov/data www.openslr.org/resources/11 dev-clean"
|
| 16 |
+
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
|
| 17 |
+
echo "<corpus-part> can be one of: dev-clean, test-clean, dev-other, test-other,"
|
| 18 |
+
echo " train-clean-100, train-clean-360, train-other-500."
|
| 19 |
+
exit 1
|
| 20 |
+
fi
|
| 21 |
+
|
| 22 |
+
data=$1
|
| 23 |
+
url=$2
|
| 24 |
+
part=$3
|
| 25 |
+
|
| 26 |
+
if [ ! -d "$data" ]; then
|
| 27 |
+
echo "$0: no such directory $data"
|
| 28 |
+
exit 1
|
| 29 |
+
fi
|
| 30 |
+
|
| 31 |
+
part_ok=false
|
| 32 |
+
list="dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500"
|
| 33 |
+
for x in $list; do
|
| 34 |
+
if [ "$part" == $x ]; then part_ok=true; fi
|
| 35 |
+
done
|
| 36 |
+
if ! $part_ok; then
|
| 37 |
+
echo "$0: expected <corpus-part> to be one of $list, but got '$part'"
|
| 38 |
+
exit 1
|
| 39 |
+
fi
|
| 40 |
+
|
| 41 |
+
if [ -z "$url" ]; then
|
| 42 |
+
echo "$0: empty URL base."
|
| 43 |
+
exit 1
|
| 44 |
+
fi
|
| 45 |
+
|
| 46 |
+
if [ -f $data/LibriTTS/$part/.complete ]; then
|
| 47 |
+
echo "$0: data part $part was already successfully extracted, nothing to do."
|
| 48 |
+
exit 0
|
| 49 |
+
fi
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# sizes of the archive files in bytes. This is some older versions.
|
| 53 |
+
sizes_old="371012589 347390293 379743611 361838298 6420417880 23082659865 30626749128"
|
| 54 |
+
# sizes_new is the archive file sizes of the final release. Some of these sizes are of
|
| 55 |
+
# things we probably won't download.
|
| 56 |
+
sizes_new="337926286 314305928 695964615 297279345 87960560420 33373768 346663984 328757843 6387309499 23049477885 30593501606"
|
| 57 |
+
|
| 58 |
+
if [ -f $data/$part.tar.gz ]; then
|
| 59 |
+
size=$(/bin/ls -l $data/$part.tar.gz | awk '{print $5}')
|
| 60 |
+
size_ok=false
|
| 61 |
+
for s in $sizes_old $sizes_new; do if [ $s == $size ]; then size_ok=true; fi; done
|
| 62 |
+
if ! $size_ok; then
|
| 63 |
+
echo "$0: removing existing file $data/$part.tar.gz because its size in bytes $size"
|
| 64 |
+
echo "does not equal the size of one of the archives."
|
| 65 |
+
rm $data/$part.tar.gz
|
| 66 |
+
else
|
| 67 |
+
echo "$data/$part.tar.gz exists and appears to be complete."
|
| 68 |
+
fi
|
| 69 |
+
fi
|
| 70 |
+
|
| 71 |
+
if [ ! -f $data/$part.tar.gz ]; then
|
| 72 |
+
if ! which wget >/dev/null; then
|
| 73 |
+
echo "$0: wget is not installed."
|
| 74 |
+
exit 1
|
| 75 |
+
fi
|
| 76 |
+
full_url=$url/$part.tar.gz
|
| 77 |
+
echo "$0: downloading data from $full_url. This may take some time, please be patient."
|
| 78 |
+
|
| 79 |
+
if ! wget -P $data --no-check-certificate $full_url; then
|
| 80 |
+
echo "$0: error executing wget $full_url"
|
| 81 |
+
exit 1
|
| 82 |
+
fi
|
| 83 |
+
fi
|
| 84 |
+
|
| 85 |
+
if ! tar -C $data -xvzf $data/$part.tar.gz; then
|
| 86 |
+
echo "$0: error un-tarring archive $data/$part.tar.gz"
|
| 87 |
+
exit 1
|
| 88 |
+
fi
|
| 89 |
+
|
| 90 |
+
touch $data/LibriTTS/$part/.complete
|
| 91 |
+
|
| 92 |
+
echo "$0: Successfully downloaded and un-tarred $data/$part.tar.gz"
|
| 93 |
+
|
| 94 |
+
if $remove_archive; then
|
| 95 |
+
echo "$0: removing $data/$part.tar.gz file since --remove-archive option was supplied."
|
| 96 |
+
rm $data/$part.tar.gz
|
| 97 |
+
fi
|
examples/libritts/cosyvoice/local/prepare_data.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import logging
|
| 3 |
+
import glob
|
| 4 |
+
import os
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def main():
|
| 12 |
+
wavs = list(glob.glob('{}/*/*/*wav'.format(args.src_dir)))
|
| 13 |
+
|
| 14 |
+
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
| 15 |
+
for wav in tqdm(wavs):
|
| 16 |
+
txt = wav.replace('.wav', '.normalized.txt')
|
| 17 |
+
if not os.path.exists(txt):
|
| 18 |
+
logger.warning('{} do not exsist'.format(txt))
|
| 19 |
+
continue
|
| 20 |
+
with open(txt) as f:
|
| 21 |
+
content = ''.join(l.replace('\n', '') for l in f.readline())
|
| 22 |
+
utt = os.path.basename(wav).replace('.wav', '')
|
| 23 |
+
spk = utt.split('_')[0]
|
| 24 |
+
utt2wav[utt] = wav
|
| 25 |
+
utt2text[utt] = content
|
| 26 |
+
utt2spk[utt] = spk
|
| 27 |
+
if spk not in spk2utt:
|
| 28 |
+
spk2utt[spk] = []
|
| 29 |
+
spk2utt[spk].append(utt)
|
| 30 |
+
|
| 31 |
+
with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
|
| 32 |
+
for k, v in utt2wav.items():
|
| 33 |
+
f.write('{} {}\n'.format(k, v))
|
| 34 |
+
with open('{}/text'.format(args.des_dir), 'w') as f:
|
| 35 |
+
for k, v in utt2text.items():
|
| 36 |
+
f.write('{} {}\n'.format(k, v))
|
| 37 |
+
with open('{}/utt2spk'.format(args.des_dir), 'w') as f:
|
| 38 |
+
for k, v in utt2spk.items():
|
| 39 |
+
f.write('{} {}\n'.format(k, v))
|
| 40 |
+
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
|
| 41 |
+
for k, v in spk2utt.items():
|
| 42 |
+
f.write('{} {}\n'.format(k, ' '.join(v)))
|
| 43 |
+
return
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
parser = argparse.ArgumentParser()
|
| 48 |
+
parser.add_argument('--src_dir',
|
| 49 |
+
type=str)
|
| 50 |
+
parser.add_argument('--des_dir',
|
| 51 |
+
type=str)
|
| 52 |
+
args = parser.parse_args()
|
| 53 |
+
main()
|
examples/libritts/cosyvoice/path.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
| 2 |
+
export PYTHONIOENCODING=UTF-8
|
| 3 |
+
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
examples/libritts/cosyvoice/run.sh
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
| 3 |
+
. ./path.sh || exit 1;
|
| 4 |
+
|
| 5 |
+
stage=-1
|
| 6 |
+
stop_stage=3
|
| 7 |
+
|
| 8 |
+
data_url=www.openslr.org/resources/60
|
| 9 |
+
data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
|
| 10 |
+
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
|
| 11 |
+
|
| 12 |
+
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
| 13 |
+
echo "Data Download"
|
| 14 |
+
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
|
| 15 |
+
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
| 16 |
+
done
|
| 17 |
+
fi
|
| 18 |
+
|
| 19 |
+
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
| 20 |
+
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
| 21 |
+
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
| 22 |
+
mkdir -p data/$x
|
| 23 |
+
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
|
| 24 |
+
done
|
| 25 |
+
fi
|
| 26 |
+
|
| 27 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
| 28 |
+
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
| 29 |
+
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
| 30 |
+
tools/extract_embedding.py --dir data/$x \
|
| 31 |
+
--onnx_path $pretrained_model_dir/campplus.onnx
|
| 32 |
+
done
|
| 33 |
+
fi
|
| 34 |
+
|
| 35 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
| 36 |
+
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
| 37 |
+
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
| 38 |
+
tools/extract_speech_token.py --dir data/$x \
|
| 39 |
+
--onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
|
| 40 |
+
done
|
| 41 |
+
fi
|
| 42 |
+
|
| 43 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
| 44 |
+
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
| 45 |
+
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
| 46 |
+
mkdir -p data/$x/parquet
|
| 47 |
+
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
| 48 |
+
--num_processes 10 \
|
| 49 |
+
--src_dir data/$x \
|
| 50 |
+
--des_dir data/$x/parquet
|
| 51 |
+
done
|
| 52 |
+
fi
|
| 53 |
+
|
| 54 |
+
# inference
|
| 55 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
| 56 |
+
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
| 57 |
+
for mode in sft zero_shot; do
|
| 58 |
+
python cosyvoice/bin/inference.py --mode $mode \
|
| 59 |
+
--gpu 0 \
|
| 60 |
+
--config conf/cosyvoice.yaml \
|
| 61 |
+
--prompt_data data/test-clean/parquet/data.list \
|
| 62 |
+
--prompt_utt2data data/test-clean/parquet/utt2data.list \
|
| 63 |
+
--tts_text `pwd`/tts_text.json \
|
| 64 |
+
--llm_model $pretrained_model_dir/llm.pt \
|
| 65 |
+
--flow_model $pretrained_model_dir/flow.pt \
|
| 66 |
+
--hifigan_model $pretrained_model_dir/hift.pt \
|
| 67 |
+
--result_dir `pwd`/exp/cosyvoice/test-clean/$mode
|
| 68 |
+
done
|
| 69 |
+
fi
|
| 70 |
+
|
| 71 |
+
# train llm
|
| 72 |
+
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
| 73 |
+
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
| 74 |
+
job_id=1986
|
| 75 |
+
dist_backend="nccl"
|
| 76 |
+
num_workers=2
|
| 77 |
+
prefetch=100
|
| 78 |
+
train_engine=torch_ddp
|
| 79 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
| 80 |
+
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
| 81 |
+
if [ $train_engine == 'deepspeed' ]; then
|
| 82 |
+
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
| 83 |
+
fi
|
| 84 |
+
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
| 85 |
+
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
| 86 |
+
for model in llm flow hifigan; do
|
| 87 |
+
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
| 88 |
+
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
| 89 |
+
cosyvoice/bin/train.py \
|
| 90 |
+
--train_engine $train_engine \
|
| 91 |
+
--config conf/cosyvoice.yaml \
|
| 92 |
+
--train_data data/train.data.list \
|
| 93 |
+
--cv_data data/dev.data.list \
|
| 94 |
+
--model $model \
|
| 95 |
+
--checkpoint $pretrained_model_dir/$model.pt \
|
| 96 |
+
--model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
|
| 97 |
+
--tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
|
| 98 |
+
--ddp.dist_backend $dist_backend \
|
| 99 |
+
--num_workers ${num_workers} \
|
| 100 |
+
--prefetch ${prefetch} \
|
| 101 |
+
--pin_memory \
|
| 102 |
+
--use_amp \
|
| 103 |
+
--deepspeed_config ./conf/ds_stage2.json \
|
| 104 |
+
--deepspeed.save_states model+optimizer
|
| 105 |
+
done
|
| 106 |
+
fi
|
| 107 |
+
|
| 108 |
+
# average model
|
| 109 |
+
average_num=5
|
| 110 |
+
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
| 111 |
+
for model in llm flow hifigan; do
|
| 112 |
+
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
| 113 |
+
echo "do model average and final checkpoint is $decode_checkpoint"
|
| 114 |
+
python cosyvoice/bin/average_model.py \
|
| 115 |
+
--dst_model $decode_checkpoint \
|
| 116 |
+
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
| 117 |
+
--num ${average_num} \
|
| 118 |
+
--val_best
|
| 119 |
+
done
|
| 120 |
+
fi
|
| 121 |
+
|
| 122 |
+
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
| 123 |
+
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
| 124 |
+
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
| 125 |
+
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
| 126 |
+
fi
|
examples/libritts/cosyvoice/tts_text.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"1089_134686_000002_000000": [
|
| 3 |
+
"hello, my name is Jack. What is your name?"
|
| 4 |
+
]
|
| 5 |
+
}
|
examples/magicdata-read/cosyvoice/path.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
| 2 |
+
export PYTHONIOENCODING=UTF-8
|
| 3 |
+
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
examples/magicdata-read/cosyvoice/run.sh
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
| 3 |
+
. ./path.sh || exit 1;
|
| 4 |
+
|
| 5 |
+
stage=-1
|
| 6 |
+
stop_stage=3
|
| 7 |
+
|
| 8 |
+
data_url=www.openslr.org/resources/68
|
| 9 |
+
data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read
|
| 10 |
+
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
|
| 11 |
+
|
| 12 |
+
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
| 13 |
+
echo "Data Download"
|
| 14 |
+
for part in dev_set test_set train_set; do
|
| 15 |
+
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
| 16 |
+
done
|
| 17 |
+
fi
|
| 18 |
+
|
| 19 |
+
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
| 20 |
+
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
| 21 |
+
for x in dev test train; do
|
| 22 |
+
mkdir -p data/$x
|
| 23 |
+
python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x
|
| 24 |
+
done
|
| 25 |
+
fi
|
| 26 |
+
|
| 27 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
| 28 |
+
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
| 29 |
+
for x in dev test train; do
|
| 30 |
+
tools/extract_embedding.py --dir data/$x \
|
| 31 |
+
--onnx_path $pretrained_model_dir/campplus.onnx
|
| 32 |
+
done
|
| 33 |
+
fi
|
| 34 |
+
|
| 35 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
| 36 |
+
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
| 37 |
+
for x in dev test train; do
|
| 38 |
+
tools/extract_speech_token.py --dir data/$x \
|
| 39 |
+
--onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
|
| 40 |
+
done
|
| 41 |
+
fi
|
| 42 |
+
|
| 43 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
| 44 |
+
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
| 45 |
+
for x in dev test train; do
|
| 46 |
+
mkdir -p data/$x/parquet
|
| 47 |
+
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
| 48 |
+
--num_processes 10 \
|
| 49 |
+
--src_dir data/$x \
|
| 50 |
+
--des_dir data/$x/parquet
|
| 51 |
+
done
|
| 52 |
+
fi
|
| 53 |
+
|
| 54 |
+
# inference
|
| 55 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
| 56 |
+
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
| 57 |
+
for mode in sft zero_shot; do
|
| 58 |
+
python cosyvoice/bin/inference.py --mode $mode \
|
| 59 |
+
--gpu 0 \
|
| 60 |
+
--config conf/cosyvoice.yaml \
|
| 61 |
+
--prompt_data data/test/parquet/data.list \
|
| 62 |
+
--prompt_utt2data data/test/parquet/utt2data.list \
|
| 63 |
+
--tts_text `pwd`/tts_text.json \
|
| 64 |
+
--llm_model $pretrained_model_dir/llm.pt \
|
| 65 |
+
--flow_model $pretrained_model_dir/flow.pt \
|
| 66 |
+
--hifigan_model $pretrained_model_dir/hift.pt \
|
| 67 |
+
--result_dir `pwd`/exp/cosyvoice/test/$mode
|
| 68 |
+
done
|
| 69 |
+
fi
|
| 70 |
+
|
| 71 |
+
# train llm
|
| 72 |
+
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
| 73 |
+
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
| 74 |
+
job_id=1986
|
| 75 |
+
dist_backend="nccl"
|
| 76 |
+
num_workers=2
|
| 77 |
+
prefetch=100
|
| 78 |
+
train_engine=torch_ddp
|
| 79 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
| 80 |
+
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
| 81 |
+
if [ $train_engine == 'deepspeed' ]; then
|
| 82 |
+
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
| 83 |
+
fi
|
| 84 |
+
cp data/train/parquet/data.list data/train.data.list
|
| 85 |
+
cp data/dev/parquet/data.list data/dev.data.list
|
| 86 |
+
for model in llm flow; do
|
| 87 |
+
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
| 88 |
+
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
| 89 |
+
cosyvoice/bin/train.py \
|
| 90 |
+
--train_engine $train_engine \
|
| 91 |
+
--config conf/cosyvoice.yaml \
|
| 92 |
+
--train_data data/train.data.list \
|
| 93 |
+
--cv_data data/dev.data.list \
|
| 94 |
+
--model $model \
|
| 95 |
+
--checkpoint $pretrained_model_dir/$model.pt \
|
| 96 |
+
--model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
|
| 97 |
+
--tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
|
| 98 |
+
--ddp.dist_backend $dist_backend \
|
| 99 |
+
--num_workers ${num_workers} \
|
| 100 |
+
--prefetch ${prefetch} \
|
| 101 |
+
--pin_memory \
|
| 102 |
+
--deepspeed_config ./conf/ds_stage2.json \
|
| 103 |
+
--deepspeed.save_states model+optimizer
|
| 104 |
+
done
|
| 105 |
+
fi
|
| 106 |
+
|
| 107 |
+
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
| 108 |
+
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
| 109 |
+
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
| 110 |
+
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
| 111 |
+
fi
|
runtime/python/grpc/.ipynb_checkpoints/client-checkpoint.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 17 |
+
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
| 18 |
+
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
| 19 |
+
import logging
|
| 20 |
+
import argparse
|
| 21 |
+
import torchaudio
|
| 22 |
+
import cosyvoice_pb2
|
| 23 |
+
import cosyvoice_pb2_grpc
|
| 24 |
+
import grpc
|
| 25 |
+
import torch
|
| 26 |
+
import numpy as np
|
| 27 |
+
from cosyvoice.utils.file_utils import load_wav
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def main():
|
| 31 |
+
with grpc.insecure_channel("{}:{}".format(args.host, args.port)) as channel:
|
| 32 |
+
stub = cosyvoice_pb2_grpc.CosyVoiceStub(channel)
|
| 33 |
+
request = cosyvoice_pb2.Request()
|
| 34 |
+
if args.mode == 'sft':
|
| 35 |
+
logging.info('send sft request')
|
| 36 |
+
sft_request = cosyvoice_pb2.sftRequest()
|
| 37 |
+
sft_request.spk_id = args.spk_id
|
| 38 |
+
sft_request.tts_text = args.tts_text
|
| 39 |
+
request.sft_request.CopyFrom(sft_request)
|
| 40 |
+
elif args.mode == 'zero_shot':
|
| 41 |
+
logging.info('send zero_shot request')
|
| 42 |
+
zero_shot_request = cosyvoice_pb2.zeroshotRequest()
|
| 43 |
+
zero_shot_request.tts_text = args.tts_text
|
| 44 |
+
zero_shot_request.prompt_text = args.prompt_text
|
| 45 |
+
prompt_speech = load_wav(args.prompt_wav, 16000)
|
| 46 |
+
zero_shot_request.prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
| 47 |
+
request.zero_shot_request.CopyFrom(zero_shot_request)
|
| 48 |
+
elif args.mode == 'cross_lingual':
|
| 49 |
+
logging.info('send cross_lingual request')
|
| 50 |
+
cross_lingual_request = cosyvoice_pb2.crosslingualRequest()
|
| 51 |
+
cross_lingual_request.tts_text = args.tts_text
|
| 52 |
+
prompt_speech = load_wav(args.prompt_wav, 16000)
|
| 53 |
+
cross_lingual_request.prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
| 54 |
+
request.cross_lingual_request.CopyFrom(cross_lingual_request)
|
| 55 |
+
else:
|
| 56 |
+
logging.info('send instruct request')
|
| 57 |
+
instruct_request = cosyvoice_pb2.instructRequest()
|
| 58 |
+
instruct_request.tts_text = args.tts_text
|
| 59 |
+
instruct_request.spk_id = args.spk_id
|
| 60 |
+
instruct_request.instruct_text = args.instruct_text
|
| 61 |
+
request.instruct_request.CopyFrom(instruct_request)
|
| 62 |
+
|
| 63 |
+
response = stub.Inference(request)
|
| 64 |
+
tts_audio = b''
|
| 65 |
+
for r in response:
|
| 66 |
+
tts_audio += r.tts_audio
|
| 67 |
+
tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
| 68 |
+
logging.info('save response to {}'.format(args.tts_wav))
|
| 69 |
+
torchaudio.save(args.tts_wav, tts_speech, target_sr)
|
| 70 |
+
logging.info('get response')
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
if __name__ == "__main__":
|
| 74 |
+
parser = argparse.ArgumentParser()
|
| 75 |
+
parser.add_argument('--host',
|
| 76 |
+
type=str,
|
| 77 |
+
default='0.0.0.0')
|
| 78 |
+
parser.add_argument('--port',
|
| 79 |
+
type=int,
|
| 80 |
+
default='50000')
|
| 81 |
+
parser.add_argument('--mode',
|
| 82 |
+
default='sft',
|
| 83 |
+
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
|
| 84 |
+
help='request mode')
|
| 85 |
+
parser.add_argument('--tts_text',
|
| 86 |
+
type=str,
|
| 87 |
+
default='你好,我是通义千问语音合成大模型,请问有什么可以帮您的吗?')
|
| 88 |
+
parser.add_argument('--spk_id',
|
| 89 |
+
type=str,
|
| 90 |
+
default='中文女')
|
| 91 |
+
parser.add_argument('--prompt_text',
|
| 92 |
+
type=str,
|
| 93 |
+
default='希望你以后能够做的比我还好呦。')
|
| 94 |
+
parser.add_argument('--prompt_wav',
|
| 95 |
+
type=str,
|
| 96 |
+
default='../../../asset/zero_shot_prompt.wav')
|
| 97 |
+
parser.add_argument('--instruct_text',
|
| 98 |
+
type=str,
|
| 99 |
+
default='Theo \'Crimson\', is a fiery, passionate rebel leader. \
|
| 100 |
+
Fights with fervor for justice, but struggles with impulsiveness.')
|
| 101 |
+
parser.add_argument('--tts_wav',
|
| 102 |
+
type=str,
|
| 103 |
+
default='demo.wav')
|
| 104 |
+
args = parser.parse_args()
|
| 105 |
+
prompt_sr, target_sr = 16000, 22050
|
| 106 |
+
main()
|
runtime/python/grpc/.ipynb_checkpoints/cosyvoice_pb2-checkpoint.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
| 3 |
+
# source: cosyvoice.proto
|
| 4 |
+
"""Generated protocol buffer code."""
|
| 5 |
+
from google.protobuf import descriptor as _descriptor
|
| 6 |
+
from google.protobuf import descriptor_pool as _descriptor_pool
|
| 7 |
+
from google.protobuf import symbol_database as _symbol_database
|
| 8 |
+
from google.protobuf.internal import builder as _builder
|
| 9 |
+
# @@protoc_insertion_point(imports)
|
| 10 |
+
|
| 11 |
+
_sym_db = _symbol_database.Default()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0f\x63osyvoice.proto\x12\tcosyvoice\"\xfb\x01\n\x07Request\x12,\n\x0bsft_request\x18\x01 \x01(\x0b\x32\x15.cosyvoice.sftRequestH\x00\x12\x37\n\x11zero_shot_request\x18\x02 \x01(\x0b\x32\x1a.cosyvoice.zeroshotRequestH\x00\x12?\n\x15\x63ross_lingual_request\x18\x03 \x01(\x0b\x32\x1e.cosyvoice.crosslingualRequestH\x00\x12\x36\n\x10instruct_request\x18\x04 \x01(\x0b\x32\x1a.cosyvoice.instructRequestH\x00\x42\x10\n\x0eRequestPayload\".\n\nsftRequest\x12\x0e\n\x06spk_id\x18\x01 \x01(\t\x12\x10\n\x08tts_text\x18\x02 \x01(\t\"N\n\x0fzeroshotRequest\x12\x10\n\x08tts_text\x18\x01 \x01(\t\x12\x13\n\x0bprompt_text\x18\x02 \x01(\t\x12\x14\n\x0cprompt_audio\x18\x03 \x01(\x0c\"=\n\x13\x63rosslingualRequest\x12\x10\n\x08tts_text\x18\x01 \x01(\t\x12\x14\n\x0cprompt_audio\x18\x02 \x01(\x0c\"J\n\x0finstructRequest\x12\x10\n\x08tts_text\x18\x01 \x01(\t\x12\x0e\n\x06spk_id\x18\x02 \x01(\t\x12\x15\n\rinstruct_text\x18\x03 \x01(\t\"\x1d\n\x08Response\x12\x11\n\ttts_audio\x18\x01 \x01(\x0c\x32\x45\n\tCosyVoice\x12\x38\n\tInference\x12\x12.cosyvoice.Request\x1a\x13.cosyvoice.Response\"\x00\x30\x01\x42\tZ\x07protos/b\x06proto3')
|
| 17 |
+
|
| 18 |
+
_globals = globals()
|
| 19 |
+
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
| 20 |
+
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'cosyvoice_pb2', _globals)
|
| 21 |
+
if _descriptor._USE_C_DESCRIPTORS == False:
|
| 22 |
+
|
| 23 |
+
DESCRIPTOR._options = None
|
| 24 |
+
DESCRIPTOR._serialized_options = b'Z\007protos/'
|
| 25 |
+
_globals['_REQUEST']._serialized_start=31
|
| 26 |
+
_globals['_REQUEST']._serialized_end=282
|
| 27 |
+
_globals['_SFTREQUEST']._serialized_start=284
|
| 28 |
+
_globals['_SFTREQUEST']._serialized_end=330
|
| 29 |
+
_globals['_ZEROSHOTREQUEST']._serialized_start=332
|
| 30 |
+
_globals['_ZEROSHOTREQUEST']._serialized_end=410
|
| 31 |
+
_globals['_CROSSLINGUALREQUEST']._serialized_start=412
|
| 32 |
+
_globals['_CROSSLINGUALREQUEST']._serialized_end=473
|
| 33 |
+
_globals['_INSTRUCTREQUEST']._serialized_start=475
|
| 34 |
+
_globals['_INSTRUCTREQUEST']._serialized_end=549
|
| 35 |
+
_globals['_RESPONSE']._serialized_start=551
|
| 36 |
+
_globals['_RESPONSE']._serialized_end=580
|
| 37 |
+
_globals['_COSYVOICE']._serialized_start=582
|
| 38 |
+
_globals['_COSYVOICE']._serialized_end=651
|
| 39 |
+
# @@protoc_insertion_point(module_scope)
|
runtime/python/grpc/.ipynb_checkpoints/cosyvoice_pb2_grpc-checkpoint.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
| 2 |
+
"""Client and server classes corresponding to protobuf-defined services."""
|
| 3 |
+
import grpc
|
| 4 |
+
|
| 5 |
+
import cosyvoice_pb2 as cosyvoice__pb2
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class CosyVoiceStub(object):
|
| 9 |
+
"""Missing associated documentation comment in .proto file."""
|
| 10 |
+
|
| 11 |
+
def __init__(self, channel):
|
| 12 |
+
"""Constructor.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
channel: A grpc.Channel.
|
| 16 |
+
"""
|
| 17 |
+
self.Inference = channel.unary_stream(
|
| 18 |
+
'/cosyvoice.CosyVoice/Inference',
|
| 19 |
+
request_serializer=cosyvoice__pb2.Request.SerializeToString,
|
| 20 |
+
response_deserializer=cosyvoice__pb2.Response.FromString,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class CosyVoiceServicer(object):
|
| 25 |
+
"""Missing associated documentation comment in .proto file."""
|
| 26 |
+
|
| 27 |
+
def Inference(self, request, context):
|
| 28 |
+
"""Missing associated documentation comment in .proto file."""
|
| 29 |
+
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
| 30 |
+
context.set_details('Method not implemented!')
|
| 31 |
+
raise NotImplementedError('Method not implemented!')
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def add_CosyVoiceServicer_to_server(servicer, server):
|
| 35 |
+
rpc_method_handlers = {
|
| 36 |
+
'Inference': grpc.unary_stream_rpc_method_handler(
|
| 37 |
+
servicer.Inference,
|
| 38 |
+
request_deserializer=cosyvoice__pb2.Request.FromString,
|
| 39 |
+
response_serializer=cosyvoice__pb2.Response.SerializeToString,
|
| 40 |
+
),
|
| 41 |
+
}
|
| 42 |
+
generic_handler = grpc.method_handlers_generic_handler(
|
| 43 |
+
'cosyvoice.CosyVoice', rpc_method_handlers)
|
| 44 |
+
server.add_generic_rpc_handlers((generic_handler,))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# This class is part of an EXPERIMENTAL API.
|
| 48 |
+
class CosyVoice(object):
|
| 49 |
+
"""Missing associated documentation comment in .proto file."""
|
| 50 |
+
|
| 51 |
+
@staticmethod
|
| 52 |
+
def Inference(request,
|
| 53 |
+
target,
|
| 54 |
+
options=(),
|
| 55 |
+
channel_credentials=None,
|
| 56 |
+
call_credentials=None,
|
| 57 |
+
insecure=False,
|
| 58 |
+
compression=None,
|
| 59 |
+
wait_for_ready=None,
|
| 60 |
+
timeout=None,
|
| 61 |
+
metadata=None):
|
| 62 |
+
return grpc.experimental.unary_stream(request, target, '/cosyvoice.CosyVoice/Inference',
|
| 63 |
+
cosyvoice__pb2.Request.SerializeToString,
|
| 64 |
+
cosyvoice__pb2.Response.FromString,
|
| 65 |
+
options, channel_credentials,
|
| 66 |
+
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
runtime/python/grpc/__pycache__/cosyvoice_pb2.cpython-310.pyc
ADDED
|
Binary file (1.81 kB). View file
|
|
|
third_party/Matcha-TTS/configs/callbacks/model_checkpoint.yaml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.ModelCheckpoint.html
|
| 2 |
+
|
| 3 |
+
model_checkpoint:
|
| 4 |
+
_target_: lightning.pytorch.callbacks.ModelCheckpoint
|
| 5 |
+
dirpath: ${paths.output_dir}/checkpoints # directory to save the model file
|
| 6 |
+
filename: checkpoint_{epoch:03d} # checkpoint filename
|
| 7 |
+
monitor: epoch # name of the logged metric which determines when model is improving
|
| 8 |
+
verbose: False # verbosity mode
|
| 9 |
+
save_last: true # additionally always save an exact copy of the last checkpoint to a file last.ckpt
|
| 10 |
+
save_top_k: 10 # save k best models (determined by above metric)
|
| 11 |
+
mode: "max" # "max" means higher metric value is better, can be also "min"
|
| 12 |
+
auto_insert_metric_name: True # when True, the checkpoints filenames will contain the metric name
|
| 13 |
+
save_weights_only: False # if True, then only the model’s weights will be saved
|
| 14 |
+
every_n_train_steps: null # number of training steps between checkpoints
|
| 15 |
+
train_time_interval: null # checkpoints are monitored at the specified time interval
|
| 16 |
+
every_n_epochs: 100 # number of epochs between checkpoints
|
| 17 |
+
save_on_train_epoch_end: null # whether to run checkpointing at the end of the training epoch or the end of validation
|
third_party/Matcha-TTS/configs/callbacks/model_summary.yaml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.RichModelSummary.html
|
| 2 |
+
|
| 3 |
+
model_summary:
|
| 4 |
+
_target_: lightning.pytorch.callbacks.RichModelSummary
|
| 5 |
+
max_depth: 3 # the maximum depth of layer nesting that the summary will include
|
third_party/Matcha-TTS/configs/logger/comet.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://www.comet.ml
|
| 2 |
+
|
| 3 |
+
comet:
|
| 4 |
+
_target_: lightning.pytorch.loggers.comet.CometLogger
|
| 5 |
+
api_key: ${oc.env:COMET_API_TOKEN} # api key is loaded from environment variable
|
| 6 |
+
save_dir: "${paths.output_dir}"
|
| 7 |
+
project_name: "lightning-hydra-template"
|
| 8 |
+
rest_api_key: null
|
| 9 |
+
# experiment_name: ""
|
| 10 |
+
experiment_key: null # set to resume experiment
|
| 11 |
+
offline: False
|
| 12 |
+
prefix: ""
|
third_party/Matcha-TTS/configs/logger/csv.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# csv logger built in lightning
|
| 2 |
+
|
| 3 |
+
csv:
|
| 4 |
+
_target_: lightning.pytorch.loggers.csv_logs.CSVLogger
|
| 5 |
+
save_dir: "${paths.output_dir}"
|
| 6 |
+
name: "csv/"
|
| 7 |
+
prefix: ""
|
third_party/Matcha-TTS/configs/logger/many_loggers.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train with many loggers at once
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
# - comet
|
| 5 |
+
- csv
|
| 6 |
+
# - mlflow
|
| 7 |
+
# - neptune
|
| 8 |
+
- tensorboard
|
| 9 |
+
- wandb
|
third_party/Matcha-TTS/configs/logger/mlflow.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://mlflow.org
|
| 2 |
+
|
| 3 |
+
mlflow:
|
| 4 |
+
_target_: lightning.pytorch.loggers.mlflow.MLFlowLogger
|
| 5 |
+
# experiment_name: ""
|
| 6 |
+
# run_name: ""
|
| 7 |
+
tracking_uri: ${paths.log_dir}/mlflow/mlruns # run `mlflow ui` command inside the `logs/mlflow/` dir to open the UI
|
| 8 |
+
tags: null
|
| 9 |
+
# save_dir: "./mlruns"
|
| 10 |
+
prefix: ""
|
| 11 |
+
artifact_location: null
|
| 12 |
+
# run_id: ""
|