--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment-roberta-es-2025-II results: [] --- # sentiment-roberta-es-2025-II This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1261 - F1 Macro: 0.6714 - F1 Weighted: 0.6733 - Precision Macro: 0.6697 - Recall Macro: 0.6751 - Accuracy: 0.6770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------:|:--------:| | 1.0981 | 1.0 | 241 | 1.0390 | 0.4469 | 0.4554 | 0.3927 | 0.5369 | 0.5588 | | 0.8394 | 2.0 | 482 | 0.7404 | 0.6780 | 0.6832 | 0.6829 | 0.6750 | 0.6826 | | 0.6608 | 3.0 | 723 | 0.8494 | 0.6603 | 0.6635 | 0.6645 | 0.6762 | 0.6722 | | 0.5192 | 4.0 | 964 | 0.7772 | 0.6869 | 0.6891 | 0.6889 | 0.6853 | 0.6889 | | 0.4056 | 5.0 | 1205 | 0.8797 | 0.6879 | 0.6888 | 0.6969 | 0.6869 | 0.6847 | | 0.327 | 6.0 | 1446 | 1.0902 | 0.6962 | 0.6998 | 0.6960 | 0.6980 | 0.7024 | | 0.2616 | 7.0 | 1687 | 1.0482 | 0.6899 | 0.6923 | 0.6940 | 0.6874 | 0.6899 | | 0.1981 | 8.0 | 1928 | 1.2889 | 0.6818 | 0.6834 | 0.6824 | 0.6897 | 0.6847 | | 0.1452 | 9.0 | 2169 | 1.4574 | 0.6852 | 0.6876 | 0.6845 | 0.6874 | 0.6868 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1