|
|
|
|
|
|
|
|
import logging |
|
|
import math |
|
|
from dataclasses import dataclass |
|
|
from functools import partial |
|
|
from typing import Any, Callable, Literal, Optional |
|
|
from typing import cast as type_cast |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from transformers import ( |
|
|
ROPE_INIT_FUNCTIONS, |
|
|
dynamic_rope_update, |
|
|
) |
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.generation.utils import GenerationMixin |
|
|
from transformers.loss.loss_utils import ForCausalLMLoss |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils.generic import LossKwargs, can_return_tuple |
|
|
from transformers.utils.import_utils import is_torch_flex_attn_available |
|
|
|
|
|
from .casa_attention import CASAAttention, CASAAttentionHandler, insert_image_tokens |
|
|
from .configuration_helium1_casa import Helium1CASAConfig |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
|
|
|
|
|
def remove_image_tokens( |
|
|
inputs_embeds: torch.Tensor, |
|
|
image_tokens_mask: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
"""Remove the image tokens from inputs_embeds as indicated by image_tokens_mask |
|
|
|
|
|
:param inputs_embeds: Tokens of shape (Batch, Seqlen, Dims) containing image tokens |
|
|
:param image_tokens_mask: 1-0 mask indicating where image tokens are; (Batch, Seqlen) |
|
|
|
|
|
:return: Tokens tensor of shape (Batch, S' < Seqlen, Dims) |
|
|
""" |
|
|
image_seq_lengths = torch.sum(image_tokens_mask, dim=1)[:, 0] |
|
|
image_seq_length = int(image_seq_lengths[0].item()) |
|
|
assert torch.all(image_seq_lengths == image_seq_length) |
|
|
new_shape = ( |
|
|
inputs_embeds.shape[0], |
|
|
inputs_embeds.shape[1] - image_seq_length, |
|
|
inputs_embeds.shape[-1], |
|
|
) |
|
|
tokens = torch.masked_select( |
|
|
inputs_embeds, |
|
|
torch.logical_not(image_tokens_mask).expand((-1, -1, inputs_embeds.shape[-1])), |
|
|
) |
|
|
return tokens.reshape(new_shape) |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
|
) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: "HeliumAttention", |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: None | torch.Tensor, |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Any, |
|
|
): |
|
|
del kwargs |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
|
|
|
class HeliumAttention(torch.nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: Helium1CASAConfig, layer_idx: None | int = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
assert layer_idx is not None |
|
|
self.layer_idx: int = layer_idx |
|
|
|
|
|
self.apply_rotary_fn = ApplyRotaryPosEmbHelium1() |
|
|
self.head_dim = getattr( |
|
|
config, "head_dim", config.hidden_size // config.num_attention_heads |
|
|
) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = 1 / math.sqrt(self.head_dim) |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, |
|
|
config.num_attention_heads * self.head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, |
|
|
config.num_key_value_heads * self.head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, |
|
|
config.num_key_value_heads * self.head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: None | torch.Tensor, |
|
|
past_key_values: None | Cache = None, |
|
|
cache_position: None | torch.LongTensor = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, torch.Tensor | None]: |
|
|
|
|
|
bs, seq_len, _ = hidden_states.shape |
|
|
|
|
|
hidden_shape = (bs, seq_len, -1, self.head_dim) |
|
|
|
|
|
|
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
num_queries = query_states.shape[2] |
|
|
|
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = self.apply_rotary_fn( |
|
|
query_states, key_states, cos, sin, num_queries=num_queries |
|
|
) |
|
|
assert key_states is not None and query_states is not None |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
|
|
|
if self.config._attn_implementation != "eager": |
|
|
if self.config._attn_implementation == "sdpa" and kwargs.get( |
|
|
"output_attentions", False |
|
|
): |
|
|
print( |
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support" |
|
|
" `output_attentions=True`. Falling back to " |
|
|
'eager attention. This warning can be removed using the argument"\ |
|
|
" `attn_implementation="eager"` when loading the model.' |
|
|
) |
|
|
else: |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update( |
|
|
key_states, value_states, self.layer_idx, cache_kwargs |
|
|
) |
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
attn_output = attn_output.reshape(bs, num_queries, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
assert isinstance(attn_output, torch.Tensor) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class ApplyRotaryPosEmbHelium1: |
|
|
@staticmethod |
|
|
def rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
@staticmethod |
|
|
def __call__( |
|
|
q: torch.Tensor, |
|
|
k: torch.Tensor, |
|
|
cos: torch.Tensor, |
|
|
sin: torch.Tensor, |
|
|
position_ids: torch.Tensor | None = None, |
|
|
unsqueeze_dim: int = 1, |
|
|
num_queries: int | None = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
del position_ids |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
if num_queries is None: |
|
|
offset = 0 |
|
|
else: |
|
|
offset = -num_queries |
|
|
|
|
|
q_embed = (q * cos[:, :, offset:]) + ( |
|
|
ApplyRotaryPosEmbHelium1.rotate_half(q) * sin[:, :, offset:] |
|
|
) |
|
|
k_embed = (k * cos) + (ApplyRotaryPosEmbHelium1.rotate_half(k) * sin) |
|
|
|
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class HeliumRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: Helium1CASAConfig, device: None | torch.device | str = None): |
|
|
super().__init__() |
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
assert self.rope_type in ROPE_INIT_FUNCTIONS, ( |
|
|
f"Invalid rope type {self.rope_type}. Supported types are: {list(ROPE_INIT_FUNCTIONS.keys())}" |
|
|
) |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(config, device=device) |
|
|
self.inv_freq: torch.Tensor |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward( |
|
|
self, x: torch.Tensor, position_ids: torch.Tensor |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
inv_freq_expanded = ( |
|
|
self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = ( |
|
|
x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
) |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
class Helium1CASAAttention(CASAAttention): |
|
|
"""A CASA Attention layer compatible with Qwen""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: Helium1CASAConfig, |
|
|
layer_idx: int | None, |
|
|
self_attn: torch.nn.Module | None = None, |
|
|
input_layernorm_fn: Callable[[torch.Tensor], torch.Tensor] | None = None, |
|
|
): |
|
|
|
|
|
super().__init__(config, layer_idx, self_attn, input_layernorm_fn) |
|
|
|
|
|
@staticmethod |
|
|
def rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_position_embeddings( |
|
|
self, |
|
|
key: Literal["q", "kv"], |
|
|
x: torch.Tensor, |
|
|
casa_handler: CASAAttentionHandler | None, |
|
|
num_queries: int = 0, |
|
|
unsqueeze_dim: int = 1, |
|
|
) -> torch.Tensor: |
|
|
"""Apply position embeddings to query and key states""" |
|
|
if casa_handler is not None: |
|
|
posemb = casa_handler.get_position_embedding(key, num_queries=num_queries) |
|
|
|
|
|
if posemb is not None: |
|
|
x = x.transpose(1, 2).to(torch.float32) |
|
|
x = (x * posemb[0].unsqueeze(dim=unsqueeze_dim)) + ( |
|
|
self.rotate_half(x) * posemb[1].unsqueeze(dim=unsqueeze_dim) |
|
|
) |
|
|
return x.transpose(1, 2) |
|
|
return x |
|
|
|
|
|
def init_from_config_proj( |
|
|
self, key: Literal["q", "o", "k", "v"], config: PretrainedConfig |
|
|
) -> torch.nn.Linear: |
|
|
"""Initialize the Linear proj in this module""" |
|
|
num_heads = config.num_key_value_heads if key in {"k", "v"} else config.num_attention_heads |
|
|
return torch.nn.Linear( |
|
|
config.hidden_size, |
|
|
num_heads * config.head_dim, |
|
|
bias=config.attention_bias if key != "o" else False, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def __rms_norm_forward__( |
|
|
hidden_states: torch.Tensor, weight: torch.Tensor, variance_epsilon: float = 1e-6 |
|
|
) -> torch.Tensor: |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon) |
|
|
return weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
class Helium1RMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: |
|
|
""" |
|
|
Helium1RMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
return __rms_norm_forward__(hidden_states, self.weight, self.variance_epsilon) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
def delta_w_factory_rms_norm( |
|
|
org_lin: Helium1RMSNorm, new_lin: Helium1RMSNorm |
|
|
) -> Callable[[torch.Tensor], torch.Tensor]: |
|
|
"""Factory for building rms norm where the weights are the sum of two layers' weights""" |
|
|
|
|
|
def _delta_w_fwd(input: torch.Tensor) -> torch.Tensor: |
|
|
nonlocal org_lin, new_lin |
|
|
return __rms_norm_forward__( |
|
|
input, org_lin.weight + new_lin.weight, new_lin.variance_epsilon |
|
|
) |
|
|
|
|
|
return _delta_w_fwd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HeliumMLP(nn.Module): |
|
|
def __init__(self, config: Helium1CASAConfig) -> None: |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
class HeliumDecoderLayer(nn.Module): |
|
|
def __init__(self, config: Helium1CASAConfig, layer_idx: None | int = None): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.config = config |
|
|
self.mlp = HeliumMLP(config) |
|
|
self.input_layernorm = Helium1RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = Helium1RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
|
|
|
self.self_attn = HeliumAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
|
|
|
is_xa_layer = layer_idx is None or not config.xa_layers or layer_idx in config.xa_layers |
|
|
self.norm_cross: None | Helium1RMSNorm = None |
|
|
self.override_norm_cross: Callable[[torch.Tensor], torch.Tensor] | None = None |
|
|
if is_xa_layer and config.casa_attention: |
|
|
|
|
|
if self.config.xa_custom_norm: |
|
|
self.norm_cross = Helium1RMSNorm(config.hidden_size) |
|
|
if config.casa_delta_w: |
|
|
self.override_norm_cross = delta_w_factory_rms_norm( |
|
|
self.input_layernorm, self.norm_cross |
|
|
) |
|
|
with torch.no_grad(): |
|
|
torch.nn.init.ones_(self.norm_cross.weight) |
|
|
|
|
|
|
|
|
norm_on_images_fn = ( |
|
|
None |
|
|
if not self.config.xa_norm_on_images |
|
|
else self.override_norm_cross |
|
|
if self.override_norm_cross is not None |
|
|
else self.norm_cross.forward |
|
|
if self.norm_cross is not None |
|
|
else self.input_layernorm.forward |
|
|
) |
|
|
|
|
|
|
|
|
self.casa_attn: Helium1CASAAttention | None = None |
|
|
if config.casa_attention and is_xa_layer: |
|
|
self.casa_attn = Helium1CASAAttention( |
|
|
config, layer_idx, self_attn=self.self_attn, input_layernorm_fn=norm_on_images_fn |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: None | torch.Tensor = None, |
|
|
position_ids: None | torch.LongTensor = None, |
|
|
past_key_values: None | Cache = None, |
|
|
output_attentions: None | bool = False, |
|
|
use_cache: None | bool = False, |
|
|
cache_position: None | torch.LongTensor = None, |
|
|
position_embeddings: None |
|
|
| tuple[torch.Tensor, torch.Tensor] = None, |
|
|
|
|
|
casa_handler: CASAAttentionHandler | None = None, |
|
|
cu_seqlens: torch.Tensor | None = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, torch.Tensor] | tuple[torch.Tensor]: |
|
|
|
|
|
apply_ca = self.casa_attn is not None |
|
|
ca_update: torch.Tensor | None = None |
|
|
if ( |
|
|
self.config.xa_order |
|
|
in { |
|
|
"parallel", |
|
|
"ca_first", |
|
|
"instead", |
|
|
} |
|
|
and apply_ca |
|
|
): |
|
|
|
|
|
assert self.norm_cross is not None |
|
|
ca_input = ( |
|
|
self.override_norm_cross |
|
|
if self.override_norm_cross is not None |
|
|
else self.norm_cross |
|
|
)(hidden_states) |
|
|
|
|
|
if self.casa_attn is not None: |
|
|
ca_update = self.casa_attn(ca_input, casa_handler=casa_handler) |
|
|
|
|
|
|
|
|
|
|
|
if ca_update is not None: |
|
|
|
|
|
if self.config.xa_order == "instead": |
|
|
outputs = (hidden_states + ca_update,) |
|
|
if output_attentions: |
|
|
outputs += ( |
|
|
torch.zeros((), device=ca_update.device, dtype=ca_update.dtype), |
|
|
) |
|
|
return outputs |
|
|
|
|
|
|
|
|
if self.config.xa_order == "ca_first": |
|
|
hidden_states = hidden_states + ca_update |
|
|
ca_update = None |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=self.input_layernorm(hidden_states), |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
cu_seqlens=cu_seqlens, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
if self.config.xa_order == "parallel" and apply_ca and ca_update is not None: |
|
|
hidden_states = hidden_states + ca_update |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
if ( |
|
|
self.config.xa_update_image_embeds |
|
|
and self.casa_attn is not None |
|
|
and casa_handler is not None |
|
|
and casa_handler.image_embeds is not None |
|
|
): |
|
|
|
|
|
hs = self.post_attention_layernorm(hidden_states).reshape(-1, hidden_states.shape[-1]) |
|
|
|
|
|
img_seq_lengths = [_x.shape[0] for _x in casa_handler.image_embeds] |
|
|
img_residual = torch.cat(list(casa_handler.image_embeds), dim=0) |
|
|
update = self.mlp(torch.cat([hs, self.post_attention_layernorm(img_residual)], dim=0)) |
|
|
|
|
|
hidden_states = hidden_states + update[: hs.shape[0]].reshape(hidden_states.shape) |
|
|
casa_handler.image_embeds = list( |
|
|
torch.split(img_residual + update[hs.shape[0] :], img_seq_lengths) |
|
|
) |
|
|
else: |
|
|
hidden_states = self.mlp(self.post_attention_layernorm(hidden_states)) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
|
class CausalHeliumOutput(CausalLMOutputWithPast): |
|
|
attention_mask: Optional[torch.Tensor] = None |
|
|
num_image_tokens_log: Optional[torch.Tensor] = None |
|
|
num_text_tokens_log: Optional[torch.Tensor] = None |
|
|
|
|
|
|
|
|
class Helium1PreTrainedModel(PreTrainedModel): |
|
|
config_class = Helium1CASAConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["HeliumDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def _init_weights(self, module: torch.nn.Module) -> None: |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
elif isinstance(module, Helium1RMSNorm): |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
class Helium1Model(Helium1PreTrainedModel): |
|
|
""" |
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] |
|
|
|
|
|
Args: |
|
|
config: Helium1CASAConfig |
|
|
""" |
|
|
|
|
|
def __init__(self, config: Helium1CASAConfig): |
|
|
Helium1PreTrainedModel.__init__(self, config) |
|
|
self.training: bool |
|
|
self._gradient_checkpointing_func: Callable |
|
|
self.config = config |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[HeliumDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = Helium1RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = HeliumRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value: nn.Module) -> None: |
|
|
self.embed_tokens = value |
|
|
|
|
|
@can_return_tuple |
|
|
def forward( |
|
|
self, |
|
|
input_ids: None | torch.LongTensor = None, |
|
|
attention_mask: None | torch.Tensor = None, |
|
|
position_ids: None | torch.Tensor = None, |
|
|
past_key_values: None | DynamicCache = None, |
|
|
inputs_embeds: None | torch.Tensor = None, |
|
|
use_cache: None | bool = None, |
|
|
output_attentions: None | bool = None, |
|
|
output_hidden_states: None | bool = None, |
|
|
cache_position: None | torch.Tensor = None, |
|
|
|
|
|
image_tokens_mask: torch.Tensor | None = None, |
|
|
|
|
|
casa_handler: CASAAttentionHandler | None = None, |
|
|
cu_seqlens: torch.Tensor | None = None, |
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
output_attentions = ( |
|
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = not self.training and ( |
|
|
use_cache if use_cache is not None else self.config.use_cache |
|
|
) |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
print( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
assert inputs_embeds is not None |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = 0 if past_key_values is None else past_key_values._seen_tokens |
|
|
assert inputs_embeds is not None |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, |
|
|
past_seen_tokens + inputs_embeds.shape[1], |
|
|
device=inputs_embeds.device, |
|
|
) |
|
|
assert cache_position is not None |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
causal_mask: None | torch.Tensor = self._update_causal_mask( |
|
|
attention_mask, |
|
|
inputs_embeds, |
|
|
cache_position, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
force_mask=False, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
position_embeddings = self.rotary_emb(inputs_embeds, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer_idx, decoder_layer in enumerate( |
|
|
self.layers[: self.config.num_hidden_layers] |
|
|
): |
|
|
is_xa_layer = not self.config.xa_layers or decoder_layer_idx in self.config.xa_layers |
|
|
if output_hidden_states is not None: |
|
|
if all_hidden_states is None: |
|
|
all_hidden_states = () |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
partial(decoder_layer.__call__, **flash_attn_kwargs), |
|
|
hidden_states, |
|
|
causal_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
casa_handler if is_xa_layer else None, |
|
|
cu_seqlens, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
casa_handler=casa_handler if is_xa_layer else None, |
|
|
cu_seqlens=cu_seqlens, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
if all_self_attns is None: |
|
|
all_self_attns = () |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
if all_hidden_states is None: |
|
|
all_hidden_states = () |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor | None, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: None | DynamicCache | Cache, |
|
|
output_attentions: bool = False, |
|
|
force_mask: bool = False, |
|
|
) -> torch.Tensor | None: |
|
|
if self.config._attn_implementation == "flex_attention": |
|
|
if isinstance(attention_mask, torch.Tensor): |
|
|
attention_mask = make_flex_block_causal_mask(attention_mask) |
|
|
return attention_mask |
|
|
|
|
|
assert attention_mask is None or isinstance(attention_mask, torch.Tensor) |
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and (force_mask or (attention_mask == 0.0).any()): |
|
|
return attention_mask |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
using_compilable_cache = ( |
|
|
past_key_values.is_compileable if past_key_values is not None else False |
|
|
) |
|
|
|
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and not using_compilable_cache |
|
|
and not output_attentions |
|
|
): |
|
|
if not force_mask and AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
|
attention_mask, |
|
|
inputs_embeds=input_tensor, |
|
|
past_key_values_length=past_seen_tokens, |
|
|
is_training=self.training, |
|
|
): |
|
|
return None |
|
|
|
|
|
dtype = input_tensor.dtype |
|
|
sequence_length = input_tensor.shape[1] |
|
|
if using_compilable_cache and past_key_values is not None: |
|
|
target_length = past_key_values.get_max_cache_shape() |
|
|
else: |
|
|
target_length = ( |
|
|
attention_mask.shape[-1] |
|
|
if isinstance(attention_mask, torch.Tensor) |
|
|
else past_seen_tokens + sequence_length |
|
|
) |
|
|
|
|
|
|
|
|
assert target_length is not None |
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask, |
|
|
sequence_length=sequence_length, |
|
|
target_length=target_length, |
|
|
dtype=dtype, |
|
|
cache_position=cache_position, |
|
|
batch_size=input_tensor.shape[0], |
|
|
) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and attention_mask is not None |
|
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
|
and not output_attentions |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = AttentionMaskConverter._unmask_unattended( |
|
|
type_cast(torch.FloatTensor, causal_mask), min_dtype |
|
|
) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask: torch.Tensor | None, |
|
|
sequence_length: int, |
|
|
target_length: int, |
|
|
dtype: torch.dtype, |
|
|
cache_position: torch.Tensor, |
|
|
batch_size: int, |
|
|
**kwargs: Any, |
|
|
): |
|
|
""" |
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
|
|
Args: |
|
|
attention_mask (`torch.Tensor`): |
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
|
`(batch_size, 1, query_length, key_value_length)`. |
|
|
sequence_length (`int`): |
|
|
The sequence length being processed. |
|
|
target_length (`int`): |
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
|
dtype (`torch.dtype`): |
|
|
The dtype to use for the 4D attention mask. |
|
|
cache_position (`torch.Tensor`): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
batch_size (`torch.Tensor`): |
|
|
Batch size. |
|
|
""" |
|
|
del kwargs |
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
|
|
causal_mask = attention_mask |
|
|
else: |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = torch.full( |
|
|
(sequence_length, target_length), |
|
|
fill_value=min_dtype, |
|
|
dtype=dtype, |
|
|
device=cache_position.device, |
|
|
) |
|
|
if sequence_length != 1: |
|
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
|
causal_mask *= torch.arange( |
|
|
target_length, device=cache_position.device |
|
|
) > cache_position.reshape(-1, 1) |
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
mask_length = attention_mask.shape[-1] |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[ |
|
|
:, None, None, : |
|
|
].to(causal_mask.device) |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
|
padding_mask, min_dtype |
|
|
) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
|
|
|
class Helium1ForCausalLM(Helium1PreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config: Helium1CASAConfig, **kwargs: Any) -> None: |
|
|
del kwargs |
|
|
super().__init__(config) |
|
|
self.model: Helium1Model |
|
|
self.model = Helium1Model(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
self._loss_function = ForCausalLMLoss |
|
|
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value: nn.Module) -> None: |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Module) -> None: |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder: Helium1Model) -> None: |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self) -> Helium1Model: |
|
|
return self.model |
|
|
|
|
|
@can_return_tuple |
|
|
def forward( |
|
|
self, |
|
|
input_ids: None | torch.LongTensor = None, |
|
|
attention_mask: None | torch.Tensor = None, |
|
|
position_ids: None | torch.LongTensor = None, |
|
|
past_key_values: None | Cache = None, |
|
|
inputs_embeds: None | torch.Tensor = None, |
|
|
image_embeds: None | torch.Tensor | list[torch.Tensor] = None, |
|
|
image_embeds_insertion_points: None | list[torch.Tensor] = None, |
|
|
labels: None | torch.LongTensor = None, |
|
|
use_cache: None | bool = None, |
|
|
output_attentions: None | bool = None, |
|
|
output_hidden_states: None | bool = None, |
|
|
cache_position: None | torch.LongTensor = None, |
|
|
logits_to_keep: int | torch.Tensor = 0, |
|
|
|
|
|
casa_windows_info: None | dict = None, |
|
|
**kwargs: Unpack[KwargsForCausalLM], |
|
|
) -> CausalHeliumOutput: |
|
|
r""" |
|
|
Helium1 augmented with CASA layers |
|
|
""" |
|
|
output_attentions = ( |
|
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
if input_ids is not None: |
|
|
assert inputs_embeds is None, ( |
|
|
"Need to provide only one of `input_ids` or `inputs_embeds`." |
|
|
) |
|
|
inputs_embeds = self.model.embed_tokens(input_ids) |
|
|
assert inputs_embeds is not None |
|
|
|
|
|
|
|
|
bs, og_seq_len, _ = inputs_embeds.shape |
|
|
image_tokens_mask: torch.Tensor | None = None |
|
|
casa_handler: CASAAttentionHandler | None = None |
|
|
|
|
|
num_image_tokens = -1 |
|
|
if image_embeds is not None: |
|
|
num_image_tokens = sum(_x.shape[0] for _x in image_embeds) |
|
|
assert image_embeds_insertion_points is not None, ( |
|
|
"Missing image embeddings insertion points" |
|
|
) |
|
|
|
|
|
if self.model.config.casa_attention: |
|
|
casa_handler = CASAAttentionHandler( |
|
|
|
|
|
inputs_embeds=torch.zeros_like(inputs_embeds), |
|
|
|
|
|
image_embeds=image_embeds, |
|
|
image_embeds_insertion_points=image_embeds_insertion_points, |
|
|
|
|
|
attention_mask=None if self.training else attention_mask, |
|
|
rope_fn=self.model.rotary_emb, |
|
|
windows=self.model.config.casa_windows, |
|
|
use_asymetric_q_kv=self.model.config.casa_use_asymetric_qkv, |
|
|
|
|
|
casa_windows_info=casa_windows_info, |
|
|
) |
|
|
|
|
|
else: |
|
|
inputs_embeds, _, attention_mask, image_tokens_mask = insert_image_tokens( |
|
|
inputs_embeds=inputs_embeds, |
|
|
image_embeds=image_embeds, |
|
|
image_embeds_insertion_points=image_embeds_insertion_points, |
|
|
attention_mask=attention_mask, |
|
|
padding_side="right" if self.training else "left", |
|
|
recover_batch_dim=True, |
|
|
) |
|
|
|
|
|
del image_embeds |
|
|
del input_ids |
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
cache_position=cache_position, |
|
|
image_tokens_mask=image_tokens_mask, |
|
|
casa_handler=casa_handler, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
assert hidden_states is not None |
|
|
if image_tokens_mask is not None: |
|
|
hidden_states = remove_image_tokens(hidden_states, image_tokens_mask) |
|
|
|
|
|
slice_indices = ( |
|
|
slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
) |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function( |
|
|
logits=logits, |
|
|
labels=labels, |
|
|
vocab_size=self.config.vocab_size, |
|
|
**kwargs, |
|
|
) |
|
|
out = CausalHeliumOutput( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
num_image_tokens_log=torch.tensor(num_image_tokens).to(logits.device).to(torch.float), |
|
|
num_text_tokens_log=torch.tensor(og_seq_len).to(logits.device).to(torch.float), |
|
|
) |
|
|
return out |
|
|
|