# mCLM Usage Example import torch from transformers import AutoTokenizer from mCLM.model.qwen_based.model import Qwen2ForCausalLM from mCLM.tokenizer.molecule_tokenizer import MoleculeTokenizer # Load model and tokenizers model = Qwen2ForCausalLM.from_pretrained( "YOUR_REPO_ID", torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("YOUR_REPO_ID") tokenizer.pad_token = tokenizer.eos_token # Load molecule tokenizer torch.serialization.add_safe_globals([MoleculeTokenizer]) molecule_tokenizer = torch.load("molecule_tokenizer.pth", weights_only=False) # Run inference user_input = "What is aspirin used for?" messages = [{"role": "user", "content": user_input}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=256) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response)