Create handler.py
Browse files- handler.py +115 -0
handler.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import locale
|
| 3 |
+
from typing import Dict, List, Any
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
+
from langchain.llms import HuggingFacePipeline
|
| 6 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
| 7 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 8 |
+
from langchain.vectorstores import Chroma
|
| 9 |
+
from langchain import PromptTemplate, LLMChain
|
| 10 |
+
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
| 11 |
+
from langchain.prompts import PromptTemplate
|
| 12 |
+
from langchain.prompts.prompt import PromptTemplate
|
| 13 |
+
from langchain.memory import ConversationBufferMemory
|
| 14 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 15 |
+
from langchain.document_loaders import WebBaseLoader
|
| 16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
+
from llm_for_langchain import LLM
|
| 18 |
+
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
| 19 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 20 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 21 |
+
from langchain_core.messages import HumanMessage
|
| 22 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 23 |
+
from langchain_core.runnables import RunnableBranch
|
| 24 |
+
|
| 25 |
+
class EndpointHandler():
|
| 26 |
+
def __init__(self, path=""):
|
| 27 |
+
|
| 28 |
+
# Config LangChain
|
| 29 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 30 |
+
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
|
| 31 |
+
|
| 32 |
+
# Create LLM
|
| 33 |
+
chat = LLM(model_name_or_path=path, bit4=False)
|
| 34 |
+
|
| 35 |
+
# Create Text-Embedding Model
|
| 36 |
+
embedding_function = HuggingFaceBgeEmbeddings(
|
| 37 |
+
model_name="DMetaSoul/Dmeta-embedding",
|
| 38 |
+
model_kwargs={'device': 'cuda'},
|
| 39 |
+
encode_kwargs={'normalize_embeddings': True}
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Load Vector db
|
| 43 |
+
urls = [
|
| 44 |
+
"https://hk.on.cc/hk/bkn/cnt/news/20221019/bkn-20221019040039334-1019_00822_001.html",
|
| 45 |
+
"https://www.hk01.com/%E7%A4%BE%E6%9C%83%E6%96%B0%E8%81%9E/822848/%E5%89%B5%E7%A7%91%E7%B2%BE%E8%8B%B1-%E5%87%BA%E6%88%B02022%E4%B8%96%E7%95%8C%E6%8A%80%E8%83%BD%E5%A4%A7%E8%B3%BD%E7%89%B9%E5%88%A5%E8%B3%BD",
|
| 46 |
+
"https://www.wenweipo.com/epaper/view/newsDetail/1582436861224292352.html",
|
| 47 |
+
"https://www.thinkhk.com/article/2023-03/24/59874.html"
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
loader = WebBaseLoader(urls)
|
| 51 |
+
data = loader.load()
|
| 52 |
+
|
| 53 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 16)
|
| 54 |
+
all_splits = text_splitter.split_documents(data)
|
| 55 |
+
|
| 56 |
+
vectorstore = Chroma.from_documents(documents=all_splits, embedding=embedding_function)
|
| 57 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
|
| 58 |
+
|
| 59 |
+
compressor = LLMChainExtractor.from_llm(self.llm)
|
| 60 |
+
retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
|
| 61 |
+
|
| 62 |
+
SYSTEM_TEMPLATE = """
|
| 63 |
+
Answer the user's questions based on the below context.
|
| 64 |
+
If the context doesn't contain any relevant information to the question, don't make something up and just say "I don't know":
|
| 65 |
+
|
| 66 |
+
<context>
|
| 67 |
+
{context}
|
| 68 |
+
</context>
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
question_answering_prompt = ChatPromptTemplate.from_messages(
|
| 72 |
+
[
|
| 73 |
+
(
|
| 74 |
+
"system",
|
| 75 |
+
SYSTEM_TEMPLATE,
|
| 76 |
+
),
|
| 77 |
+
MessagesPlaceholder(variable_name="messages"),
|
| 78 |
+
]
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Wrap the retriever
|
| 82 |
+
query_transforming_retriever_chain = RunnableBranch(
|
| 83 |
+
(
|
| 84 |
+
lambda x: len(x.get("messages", [])) == 1,
|
| 85 |
+
# If only one message, then we just pass that message's content to retriever
|
| 86 |
+
(lambda x: x["messages"][-1].content) | retriever,
|
| 87 |
+
),
|
| 88 |
+
# If messages, then we pass inputs to LLM chain to transform the query, then pass to retriever
|
| 89 |
+
question_answering_prompt | chat | StrOutputParser() | retriever,
|
| 90 |
+
).with_config(run_name="chat_retriever_chain")
|
| 91 |
+
|
| 92 |
+
document_chain = create_stuff_documents_chain(chat, question_answering_prompt)
|
| 93 |
+
|
| 94 |
+
self.conversational_retrieval_chain = RunnablePassthrough.assign(
|
| 95 |
+
context=query_transforming_retriever_chain,
|
| 96 |
+
).assign(
|
| 97 |
+
answer=document_chain,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 101 |
+
# pseudo
|
| 102 |
+
# self.model(input)
|
| 103 |
+
inputs = data.pop("inputs", data)
|
| 104 |
+
output = self.conversational_retrieval_chain.invoke(
|
| 105 |
+
{
|
| 106 |
+
"messages": [
|
| 107 |
+
HumanMessage(content=inputs)
|
| 108 |
+
],
|
| 109 |
+
}
|
| 110 |
+
)
|
| 111 |
+
print(output['answer'])
|
| 112 |
+
|
| 113 |
+
return output
|
| 114 |
+
|
| 115 |
+
|